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GLOSSARY 

LF - low fat diet, contains 2% safflower oil as calories 

SO - high fat diet, contains 38% safflower oil as calories 

BT - high fat diet, contains 38% beef tallow as calories 

AL - ad libitum feeding, 24 hours feeding out of a 24 hour period 

MF - meal feeding, 3 hours feeding out of a 24 hour period 

30 - 30 days feeding length, corresponding to age 2 months 

60 - 60 days feeding length, corresponding to age 3 months 

90 - 90 days feeding length, corresponding to age 4 months 
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LSD - least significant difference 
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ANOVA - analysis of variance 
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INTRODUCTION 

The National Research Council and the American Medical Association 

recommended that individuals at risk from coronary heart disease reduce 

their total fat intake, increase their intake of polyunsaturated fat, and 

reduce saturated fat intake in order to reduce their serum cholesterol 

levels.^ However, the mechanisms whereby polyunsaturated fats decrease 

serum cholesterol concentrations are under dispute. Available evidence 

points to accelerated cholesterol turnover in conjunction with redistribu­

tion of the total body cholesterol pool during polyunsaturated fat con­

sumption (Bloomfield, 1964; Grundy and Ahrens, 1970). The action 

of polyunsaturated fats appears to be multi-faceted. The magnitude of 

hypocholesteremia produced by polyunsaturated fat intake could result from 

simultaneous changes in the metabolism of cholesterol, triglycerides, bile 

acids and lipoproteins. 

The consequences of prolonged and high level intakes of polyun­

saturated fats on apparently healthy mature or on young populations are 

not well documented. Recent findings indicate that polyunsaturated fat 

itself may pose risks to health. The risk seems to arise mostly from the 

high proportion of linoleic acids in most vegetable oils (50-80%). It is 

known that at least 2-3% of the total calories consumed should be derived 

from linoleic acid to prevent essential fatty acid deficiencies in both 

man and rat. However, the dietary level which may produce detrimental 

^Diet and Coronary Heart Disease, A joint statement by the Food and 
Nutrition Board, Division of Biology and Agriculture, National Academy of 
Sciences - National Research Council, and the Council on Foods and Nutri­
tion, American Medical Association, July, 1972. 
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effects is not known. Part of this problem stems from insufficient 

knowledge of the overall physiological functions of linoleic acid. One 

example is the relationship of linoleic acid to prostaglandin synthesis, 

and the letter's involvement in coronary heart disease. Linoleic acid 

intake at 15-16% of total calories appears to be optimal for preventing 

platelet aggregation and producing maximal reduction of serum lipids, when 

dietary cholesterol intake averages 300-400 mg per day (Vergroesen, 1976). 

Other findings indicate that rats raised on safflower oil as 40% of calo­

ries (approximately 32% linoleic acid), have higher mortality rates during 

respiratory infection when compared to animals fed beef tallow at similar 

levels (Dupont et al., 1975). The fatty-acid composition of certain tis­

sues, namely, liver, adipose and adrenals reflect dietary fat intake 

(Egwin and Kummerow, 1972). Animals fed polyunsaturated fats accumulate 

large amounts of unsaturated fatty acids in some of these tissues 

(Reeves, 1971). Furthermore, there is evidence of membrane structure 

alteration when linoleic acid replaces other fatty acids (Elson andShrago, 

1975). In addition unsaturated fats are susceptible to oxidation. There 

are indications that the resulting by-products, e.g., peroxides, are 

carcinogenic in some animal tissues. During exposure to X-ray irradia­

tion, animals previously fed polyunsaturated fatty acids did not survive 

as well as controls (Yatvin et al., 1975). 

In previous work in our laboratory serum cholesterol levels increased 

in adult rats when the feeding period was restricted to 8 hours in a 24 

hour period (Reeves, 1971; Carlson, 1975). This elevation was more 

apparent when the experimental period was extended from 10 to 30 days. 

Meal frequency was therefore a major variable in the present study. 
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The present study was conducted in two sections. Section I consisted 

of experiment 1, while Section IIconsisted of experiments 2 and 3. The 

objective of the first experiment was to assess metabolic changes in the 

cholesterol pathway in maturing rats using the following dietary varia­

bles: 1) meal frequency, 2) dietary fat level and saturation, 3) duration 

of feeding (30 vs. 60 vs. 90 days). The effects of these variables on 

serum cholesterol concentrations in animals undergoing rapid development 

were explored. These feeding periods corresponded to developmental 

periods ending at ages 2, 3 and 4 months or the equivalent of 5, 7 1/2 and 

10 years in humans. It was estimated that a dietary fat concentration of 

20% by weight or 38% of calories was equivalent to the average fat intake 

of western populations. Safflower oil and beef tallow were chosen based 

on their occurrence in human diets, the high level of polyunsaturated 

fatty acids in safflower oil, the high level of digestibility and satu­

rated fatty acids in beef tallow. 

Radiotracers were used to monitor relative rates of cholesterol bio­

synthesis, degradation, reabsorption, excretion and transport in the 

rapidly equilibrating pools of serum, liver and intestines. 

A second experiment was designed to study cardiac mechanical function 

in animals treated similarly to those of experiment 1. The objective of 

this experiment was to study the causes of increased cardiac fragility in 

safflower oil fed rats, which had been one of the subjective observations 

in experiment 1. The assumption was made that cardiac fragility would 

alter cardiac mechanical performance and this alteration would be re­

flected in structural changes, specifically in elastin, collagen and the 
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intercellular matrix. A stress-strain response of cardiac tissue was 

measured to assess changes in cardiac distensibility with dietary varia­

tions. Concurrently, a third experiment was designed to examine the 

ultrastructures of myocardial cells, in order to aid the interpretation 

of functional alterations. In experiment 3 only one time period (90 days) 

was used from the design employed in experiment 1. 
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SECTION I. CHOLESTEROL METABOLISM 

Review of Literature 

Introduction 

Cholesterol is a sterol found in every tissue of the animal. It is 

the most abundant sterol in the animal kingdom. In the body, it serves 

four basic functions: 1) it is a structural component of cell membranes, 

2) it stabilizes the structure of plasma lipoproteins, 3) it is a pre­

cursor of bile acids and their metabolites, and 4) it acts as a precursor 

of steroid hormones and vitamin D. 

Cholesterol production is related to the needs of the organism, and 

in this is conditioned to some extent by nutritional, endocrine and neuro­

humoral influences. Cholesterogenesis is heightened during active tissue 

growth as in fetal brain, intestinal mucosa and certain tumors (Bortz, 

1973). The diseases that are implicated in malfunction of cholesterol 

metabolism are numerous, and include xantheremia, cardio-vascular dis­

eases and familial hypercholesteremia. In addition, abnormal development 

of brain and myelin sheath has been associated with cholesterol deprivation 

in infancy. Consequently, these defects have attracted investigators to 

the study of the regulations of cholesterol metabolism. 

Maintenance of cholesterol homeostasis 

In the intact animal, total body cholesterol is regulated at four 

loci: absorption, synthesis, degradation (conversion to bile acids) and 

excretion (neutral steroids and degradative products). There are two 

routes of input into body cholesterol pool, i.e., via dietary intake and 

endogenous synthesis from acetate. Cholesterol is removed from the body by 
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excretion via bile which includes acidic and neutral steroids, and as 

neutral steroids from the intestinal mucosa. Cholesterol homeostasis is 

maintained by an intricate balance between input versus output mechanisms. 

However, different species of animals vary in the interaction of these 

compensatory mechanisms. In humans, cholesterol absorption was reduced to 

50% when cholesterol intake was moderate (540 mg per day), and declined to 

25-30% when intake was high, 3 g/day (Quintao et al., 1971). In the rat 

and dog, cholesterol absorption was about 85-90% during moderate intake of 

1% by weight of diet (Wilson, 1968). On the other hand, the rabbit showed 

no restraint towards amount of cholesterol absorbed. Feeding cholesterol 

to rabbits led to marked increases in plasma and tissue cholesterol levels 

(Ho and Taylor, 1968). 

In most animals, cholesterol accumulation in the tissues is offset 

normally by either enhanced excretion of cholesterol as neutral and acidic 

steroids in the bile, or by feedback inhibition of cholesterol synthesis, 

or by decreased cholesterol absorption. In man, because of limited ability 

to convert cholesterol into bile acids, excessive absorption of exogenous 

cholesterol was curtailed by lowered ability to absorb dietary cholesterol, 

as well as by excretion of large quantities of neutral steroids (Quintao 

et al., 1971). In rats (Wilson, 1964), dogs (Ho and Taylor, 1968) and 

squirrel monkeys (Lofland et al., 1971), expansion of body cholesterol 

pool due to high dietary cholesterol intakes was prevented by increased 

bile acid excretion. In rats after 9 months of cholesterol feeding, only 

the liver showed signs of increased cholesterol content. In addition, 

plasma hypercholesterolemia was not observed. Cholesterol content in other 

tissues, e.g., adrenal, brain, lungs, spleen, heart, skin, small intestine. 
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colon, aorta, kidney, adipose tissue and skeletal muscle remained fairly 

constant. Under this same condition, liver cholesterogenesis was complete­

ly (>90%) suppressed. In contrast, small intestinal cholesterogenesis de­

creased only slightly. In humans, depending on the metabolic states of the 

individual tested, cholesterol absorption averaged 63% (Nestel et al., 

1973) for obese subjects, compared to 50% for normalized subjects (Quintao 

et al., 1971). Cholesterol synthesis per day in obese subjects was 

approximately twice that in lean subjects (Nestel et al., 1973). 

Body cholesterol pools In general, the exchange rates between 

tissue and plasma cholesterol vary with the type of tissue. The turnover 

of plasma cholesterol has been studied in several species by administration 

of either labeled cholesterol or a labeled biosynthetic precursor, followed 

by sequential determinations of plasma cholesterol specific activities over 

several weeks. In most studies, it had been a consistent feature that the 

semi logarithmic plot of cholesterol specific activity against time de­

scribed an initial curved portion followed by a straight line (Dietschy and 

Wilson, 1970). The first detailed analysis of the disappearance curve of 

radioactive cholesterol was made by Goodman and Noble (1968). Their work, 

based on 10 human subjects, led to the initial concept of two cholesterol 

pools, A and B (Figure 1). In the formulation of the two cholesterol pool 

model, it was assumed that the escape of cholesterol from Pool B to Pool A 

was negligible. The entry, however, of cholesterol from Pool A to Pool B 

was important. The two pool model was substantiated by work from other 

investigators (Nestel et al., 1969; Grundy et al., 1969). Wilson 

(1970 later modified the two pool model to three by the addition of 

a nonexchangeable pool, C, based on work with squirrel monkeys 
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and baboons (Figure 1). 

synthesis , absorption 

Input 

A —âlûJût  ̂ B ĴY/»|gW C 

I ««tange «clLge^ 
Output I 

neutral sterols acidic sterols 

Figure 1. The three pool model of Wilson (1970). In this model choles­
terol comprised of one nonexchangeable or very slow exchanging 
pool (C) and two exchangeable pools—a rapidly exchanging pool 
(A) and a slowly exchanging pool (B). Input into pool A 
occurred via endogenous synthesis from acetate and absorption 
of dietary cholesterol. Net output from the system occurred 
via the feces as neutral and acidic sterols. Each of these 
routes of input and output were subjected to regulations. 

Hepatic choiesterogenesis 

Liver is the prime locus of endogenous cholesterol synthesis, with 

the small intestine ranking next in importance. In the rat, both organs 

contribute about 80% of the total endogenous source (Dietschy and Wilson, 

1970). Under most physiological and nutritional changes, for example in 

fasting, cholesterol feeding, fat feeding, bile salts feeding, the liver 

is more sensitive to changes than the small intestine. The liver is the 

key site of bile acid and cholesterol production, controls the entero-

hepatic flow of bile and therefore cholesterol absorption, synthesizes 
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triglycerides and lipoproteins, and finally is a source of plasma choles­

terol (Hotta and Chaikoff, 1955; Siperstein and Pagan, 1966). 

Control of hepatic synthesis The rate of hepatic cholesterol 

synthesis is regulated by three main variables: dietary cholesterol in­

take, enterohepatic bile acid circulation and fasting. 

Dietary cholesterol Hepatic cholesterol synthesis was 

noticed to be under negative feedback control by the amount of dietary 

cholesterol intake in rats, squirrel monkeys and man (Dietschy and Wilson, 

1968; Siperstein, 1970; Siperstein and Guest, 1960). In rats feeding 

cholesterol led to a feedback inhibition of 80-96%, while in monkeys and 

man, suppressions were less apparent at 60-80% and 50%, respectively (Ho 

and Taylor, 1970). The rate of cholesterogenesis also varied inversely 

with the amount of cholesterol in the liver (Gould et al., 1953; Frantz 

et al., 1954; Shapiro and Rodwell, 1971). In rat, the conversion of 

acetate to cholesterol was reduced to 5% of maxima after prolonged feeding 

of cholesterol at levels of 1-5% in the diet by weight (Tomkins et al., 

1953; Dietschy and Siperstein, 1967). Cholesterol feeding had, however, 

no effect on acetate conversion to COg or to fatty acids (Dietschy and 

Wilson, 1970). 

Workers have noted that the inhibition of hepatic cholesterogenesis 

occurred as early as 4 hours after cholesterol feeding, coinciding with 

increased hepatic cholesterol content. The suppression was most apparent 

after 12 hours of cholesterol feeding (Shapiro and Rodwell, 1971; Sakakida 

et al., 1963). On the other hand, the restitution of normal levels of 

hepatic synthesis following discontinuance of cholesterol feeding was re­

lated to the duration of cholesterol feeding. Taylor et al. (1956), for 
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example, showed that resumption of normal rates of hepatic cholestero-

genesis required 24 hours of cholesterol deprivation, if cholesterol feed­

ing had been 24 hours. However, when cholesterol intake was extended to 

15 days, recovery to normal hepatic sterolgenesis required about 2 months 

on a cholesterol free diet. 

The infusion of either chylomicrons or serum from hypercholesteremic 

subjects suppressed hepatic cholesterogenesis (Sakakida et al., 1963; 

Tanabe et al., 1972). This indicated that hepatic sterolgenesis was in­

fluenced by dietary cholesterol present in lymphatic channels and in lipo­

proteins. 

The conversion of beta-hydroxy-beta-methyl-glutaryl CoA (HMG-CoA) to 

mevalonate has been identified as the rate limiting step in cholesterol 

biosynthesis (Gould and Popjak, 1957; Siperstein, 1970). The activity of 

the regulating enzyme of this step, HMG-CoA reductase, correlated well 

with hepatic cholesterol synthesis under various physiological and nutri­

tional influences, such as cholestyramine feeding, cholesterol feeding, 

fasting, fat feeding, diurnal variations (Shapiro and Rodwell, 1972; 

Dietschy and Brown, 1974). Under these conditions cholesterol synthetic 

capacity was varied over a hundredfold by dietary modifications. In each 

instance the correlation in magnitude and direction between cholesterol 

synthesis and reductase activity was evident. 

Evidence is conflicting regarding the active form of cholesterol re­

quired for product inhibition of HMG-CoA reductase. Siperstein (1970) 

proposed a lipoprotein form of cholesterol, rather than cholesterol it­

self, as the effective feedback inhibitor based on reports in the litera­

ture that showed 1) chylomicra, when infused through the systemic 
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circulation, reduced hepatic cholesterogenesis and 2) removal of chylo-

micra by thoracic fistula stimulated hepatic cholesterogenesis. Findings 

by others with cultured cells showed that when LDL and VLDL were added to 

the medium, cholesterol synthesis was depressed via reduction of the re­

ductase activity (Brown and Goldstein, 1974; Kirsten and Watson, 1974). 

On the other hand, HDL did not suppress reductase activity in human fibro­

blasts (Brown and Goldstein, 1974). It appeared that the effectiveness of 

LDL and VLDL in suppressing HMG-CoA reductase activity was afforded by 

apolipoprotein B, which is present in both LDL and VLDL, but absent in 

HDL. Brown and Goldstein (1974) proposed that the molecular mechanism of 

LDL suppression involved firstly, the attachment of LDL to the cell mem­

brane, secondly, the degradation of the protein moiety, thirdly, the 

transfer of the cholesterol moiety across the membrane and fourthly, the 

inhibition of the reductase activity by cholesterol. 

The mechanism of action of cholesterol and other steroids on the in­

hibition of HMG-CoA reductase activity is not fully understood. Siperstein 

and Pagan (1966) suggested that feedback control by cholesterol involves 

end product rather than mere suppression of reductase synthesis or genetic 

repression based on the following evidence: 1) the existence of a feed­

back inhibitor, 2) the swiftness of inhibitory action, and 3) the occur­

rence of feedback early in the cholesterol synthetic pathway. However, 

in later review, McNamara et al. (1972) emphasized that sterol inhi­

bition of reductase activity was affected primarily by decreasing the 

reductase content. Recent evidence points to both modulation of existing 

reductase activity and changes in the quantity of reductase protein as 



www.manaraa.com

13 

essential for cholesterol inhibition of HMG-CoA reductase (Higgins and 

Rudney, 1973). 

Higgins and Rudney (1973) proposed a biphasic model for the regula­

tion of rat liver HMG-CoA reductase by dietary cholesterol which involved 

an initial reduction of reductase activity (4 hours after cholesterol 

feeding), followed by a slower decrease of reductase quantity (8 hours 

after cholesterol feeding). 

The mechanism by which cholesterol modulates the activity of re­

ductase is not clear. Direct allosteric inhibition of reductase appeared 

unlikely for cholesterol, because cholesterol-rich lipoproteins from 

either plasma or liver did not always inhibit the reductase activity of 

liver microsomes from mice (Kandutsch and Packie, 1970) or rats (Shapiro 

and Rodwell, 1971; Hamprecht et al., 1971) or cell free extracts of human 

fibroblasts (Brown and Goldstein, 1974). In addition, the reciprocal re­

lationship of cholesterol synthesis and hepatic content was not always 

demonstrated (Bortz and Steele, 1973; Bortz, 1973). Finally, in vitro 

preparations of liver homogenates on partially purified HMG-CoA reductase 

failed to demonstrate reduction in cholesterol synthesis when cholesterol 

as suspension and emulsion was added to the medium (Linn, 1967; Kawachi 

and Rodney, 1970). 

Sterols may function indirectly, activating or inducing synthesis of 

reductase inhibitors. However, no inhibitors of reductase activity had 

been isolated from tissue homogenates of cholesterol-fed animals (Shapiro 

and Rodwell, 1971) or from extracts of cultured cells grown in cholester­

ol-rich media (Brown and Goldstein 1974). Since modulation of hepatic 

cholesterol activity occurred early (4 hours after feeding 1% cholesterol 
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diet) in the in vivo regulation by cholesterol (Higgins and Rudney, 1973), 

inhibitors might be transitory, acting only until a decrease in synthesis 

is initiated (Rodwell et al., 1976). 

Reduction of reductase activity may also be mediated through cAMP 

and MgATP-dependent inactivation systems (Beg et al., 1973). When cAMP was 

added to liver slices or homogenates, the rate of cholesterol synthesis 

was decreased (Raskin et al., 1974). Furthermore, reductase in microsomes 

isolated from cAMP-treated homogenates had decreased activity (Beg et al., 

1973). However, the physiological significance of the in vitro inhibition 

of cholesterol synthesis and reductase activity was questioned by Raskin 

et al. (1974). In their work, the minimum concentrations of cAMP required 

for an observable in vitro effect were 3-4 orders of magnitude greater 

than physiological concentrations. A rapid decrease in reductase activity 

was observed when isolated microsomes were incubated withMg-ATP prior to 

reductase assay (Beg et al., 1973). The mechanism of activation and in­

activation of HMG-CoA reductase activity may be similar to that for 

acetyl-CoA carboxylase in which phosphorylation inactivates the enzyme and 

diphosphorylation activates it (Carlson and Kim, 1973). 

Regulation of the amount of HMG-CoA reductase synthesized involved 

the interaction of cholesterol with chromatin (Davidson and Gould, 1973). 

Rat liver chromatin in the DNA acidic protein fraction was associated with 

free and esterified cholesterol. Feeding cholestc.'ol increased chromatin-

bound cholesterol while decreasing the ratio of free to esterified choles­

terol associated with chromatin. 

A study by Kirsten and Watson (1974) with HTC cells showed that when 

LDL was added to cells grown in free LDL medium, reductase activity was 
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rapidly reduced. However, when actinomycin D was added with LDL, re­

ductase activity was unaffected. These results suggested that depression 

of reductase synthesis by LDL occurred at a site subsequent to RNA 

transcription. It is possible that cholesterol regulates HMG-CoA re­

ductase synthesis by interfering at the level of DNA transcription. 

Thus although the process of cholesterogenesis seemed to exhibit 

physiological symptoms of product feedback control, biochemical charac­

teristics failed to completely identify the specifics of this process. 

Fasting Fasting up to 24 hours resulted in a marked de­

crease in hepatic cholesterol synthesis in several species, e.g., rat, 

monkeys, man (Tomkins and Chaikoff, 1952; Dietschy and Wilson, 1968; Weis 

and Dietschy, 1969). The decreased hepatic cholesterogenesis was asso­

ciated with 1) decreased enzymatic activity of HMG-CoA reductase (Bucher 

et al., 1960), 2) decreased enzymatic synthesis (Regen et al., 1966), 3) 

increased cholesterol content, particularly the esterified cholesterol 

content of hepatic microsomes. This last observation supports the concept 

of direct inhibition of HMG-CoA reductase (Tsai and Dyer, 1973). In 

addition, evidence of a partial block between squalene and cholesterol 

during fasting has also been reported (Bucher et al., 1960). 

Enterohepatic circulation of bile acids The initial observa­

tions that biliary diversion resulted in an increased rate of hepatic and 

small intestinal cholesterogenesis led to the speculation that certain 

components in the enterohepatic bile circulation had a controlling effect 

on sterol synthesis in these organs (Dietschy and Siperstein, 1965). In 

general, any dietary or surgical manipulations that result in depletion 



www.manaraa.com

16 

of enterohepatic circulation of bile acids could lead to augmented rates 

of cholesterogenesis in the liver. Examples are external biliary fistula-

tion in rats (Myant and Eder, 1961), ileal bypass in monkeys (Moutafis and 

Myant, 1968), and feeding of cholestyramine, a bile acid sequestrant, to 

swine (Schneider et al., 1966) or rats (Huff et al., 1963). Conversely, 

expansion of the bile acid pool by feeding bile acids or their derivatives 

could lead to decreased endogenous cholesterol synthesis. Beher and Baker 

(1959) showed that feeding bile salts to rats resulted in decreased con­

version of acetate to cholesterol. More recently, Grundy et al. (1966) 

obtained similar results in humans, using steroid balance techniques. 

The mechanism by which bile acids or bile salts influence hepatic 

cholesterogenesis may be affected through HMG-CoA reductase and choles­

terol absorption. Hamprecht et al. (1971) showed that cholic acid feeding 

prevented the diurnal rise of HMG-CoA reductase activity, while Barth 

et al. (1973) reported reduction of HMG-CoA reductase synthesis with bile 

salt feeding. 

Increased hepatic cholesterogenesis following biliary drainage could 

be secondary to decreased cholesterol absorption. This could be achieved 

through the release of negative feedback inhibition of cholesterol on 

hepatic synthesis. 

Small intestine cholesterogenesis The small intestine ranks 

next in importance to the liver in synthesizing endogenous cholesterol. 

Cholesterol synthesis in the small intestine, compared to liver, is less 

susceptible to feedback inhibition by dietary cholesterol. This effect 

has been reported for several animals including rats (Dietschy, 1968), 

baboons (Wilson, 1972) and man (Dietschy and Gamel, 1971). The 
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primary functional contribution of cholesterol synthesis in the small 

intestine is geared to epithelial turnover. However, during cholesterol 

ingestion when hepatic cholesterogenesis is suppressed, the small in­

testine contributes 50-80% of endogenous cholesterol in the rat (Mclntyre 

and Isselbacher, 1973; Chevallier and Lutton, 1973). 

Cholesterol synthesis occurs throughout the whole length of the small 

intestine. However, the terminal ileal regions appear to be most active 

in rats (Dietschy and Siperstein, 1965) and in man (Dietschy and Gamel, 

1971). The rate of cholesterogenesis in the intestine varies with the 

tissue layer. The crypt cells, where mitosis is most active, have the 

highest rate of cholesterogenesis compared to the villi and muscle cells 

(Wilson, 1968). 

Control of small intestine cholesterol synthesis Small in­

testine cholesterogenesis, like that in liver, is influenced by dietary 

cholesterol, by fasting and by bile acid flow in the enterohepatic circu­

lation. The rate limiting steps and enzymes controlling small intestine 

cholesterogenesis are similar to those found in hepatic synthesis. 

Dietary cholesterol In rats, dogs and monkeys dietary 

cholesterol decreased cholesterogenesis in the small intestine only 

slightly or not at all (Dietschy and Wilson, 1968; Gould et al., 1953). 

The HMG-CoA reductase activity of intestinal tissue was not suppressed by 

dietary cholesterol. However, feeding rats cholesterol plus taurocholate 

or taurochenodeoxycholate did suppress reductase activity. It has been 

suggested that the inability of cholesterol alone to suppress intestinal 

reductase activity could be attributable to failure to reach its site of 

action within the intestinal cells (Shefer et al., 1973). It could also 
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imply that intestinal HMG-CoA reductase is an isozyme of hepatic HMG-CoA 

reductase, with therefore a higher Km for cholesterol inhibition. 

Fasting In rats, food deprivation for 48 hours did not 

affect intestinal cholesterogenesis (Dietschy and Siperstein, 1967). In 

baboons, however, an 18-20 hour fast stimulated cholesterol synthesis 

slightly, while a 48 hour fast in man reduced intestinal cholesterogenesis 

at the distal duodenum by 50% (Dietschy and Gamel, 1971). It is therefore 

difficult to infer the effects of fasting on intestinal cholesterogenesis 

from the limited work which has been done with the various conditions 

under which experiments were done. 

Enterohepatic bile circulation In rat and man the intestine 

responded to bile acid diversion with increased cholesterol synthesis 

throughout the bowel, while infusion of bile caused a marked decrease of 

sterol formation (Dietschy and Siperstein, 1965). Biliary diversion or 

feeding of B-sitosterol enhanced HMG-CoA reductase in rat intestinal crypt 

cells. On the other hand, feeding taurocholate and taurochenodeoxycholate 

decreased HMG-CoA reductase activity (Shefer et al., 1973). The inhibitory 

activity of bile salts seemed to depend on the presence of a 3 or 7a-hy-

droxy group and a carboxyl group at the terminal side chain. Inhibition was 

abolished when the 6 or 12 position was hydroxylated. Taurine conjugates of 

bile acids were as effective as free bile acids, while glycine conjugates 

were only half as effective as other conjugates (Hatanaka et al., 1972). 

The mechanism of bile acid control on intestinal cholesterogenesis is 

not well developed. Cholesterol synthesis at any section of the in­

testine is related to bile acid concentration in the lumen at the corre­

sponding section. Ho and Taylor (1970) suggested that regulatory 
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mechanisms involve HMG-CoA repression at the genetic level rather than 

competitive or allosteric inhibition. This argument was based on the 

following evidence: 1) a latent period required for intestinal inhibition 

after infusion of bile salts into the intact animal, 2) absence of feed­

back inhibition by the addition of bile salts in vivo, and 3) the sensi­

tivity of Vmax but not Km of HMG-CoA reductase to bile salts. 

The reciprocal relationship between lumen bile concentration and 

intestinal cholesterogenesis is dependent only on the former. When rats 

were fed tomatine, a compound which precipitates cholesterol and makes it 

unavailable for absorption, the rate of synthesis in the intestine in­

creased, in spite of unchanged luminal bile acid turnover and level (Cayen, 

1971). 

Rate-1imitinq steps in cholesterol synthesis 

About 26 steps have been identified in the synthesis of cholesterol 

from acetate (Popjak and Cornforth, 1960; Frantz and Shroepfer, 1967). 

18 acetyl CoA cholesterol + 9 COz 

The initial chemical reactions in this sequence are part of pathways 

common to other metabolic end products or initiating substrates such as 

glycolysis, tricarboxylic acid cycle and fatty acid synthesis. The fourth 

step whereby HMG-CoA is converted to mevalonate is the primary rate con­

trolling step of cholesterogenesis. 

Though mevalonate is the product of a committed step, which leads 

primarily to cholesterol synthesis, it is also the precursor of several 

nonsteroidal products. These quantitatively minor but physiologically 

important products include the polyisoprenol side chains of ubiquinone and 

dolichol, which are lipid carriers in glycoprotein synthesis (Bloch, 1976). 
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Furthermore, recent work by Bhavani and Short (1973) strongly suggests a 

branching of the main pathway at a point just prior to squalene leading to 

the estrogen-related equilin and equilenine directly rather than via 

cholesterol. 

Other rate limiting steps of cholesterol synthesis which are of 

secondary importance include the conversion of acetyl CoA ->• HMG-CoA, 

mevalonate ->• cholesterol, and squalene cholesterol. 

Acetyl CoA HM6-C0A The findings of Lane et al. (1973) indicated 

that beta-ketoacyl thiolase and HMG-CoA synthetase occurred in the cyto­

plasm as well as in mitochondria. Synthetase and thiolase activities de­

creased following prolonged cholesterol feeding (White and Rodney, 1970; 

Beg and Gibson, 1973). These changes, however, are slow and incomplete, 

thereby suggesting that the thiolase and synthetase enzymes function as 

potential loci for an adaptive, secondary mechanism of regulation. 

Mevalonate cholesterol Prolonged cholesterol feeding depressed 

the conversion of mevalonate into farnesyl pyrophosphate as well as the 

subsequent conversion of farnesyl pyrophosphate into squalene (Gould and 

Swyryd, 1966). In addition, fasting decreased the activities of pyro-

phosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, 

dimethylallyltransferase and squalene synthetase (Slakey et al., 1972). 

Although these changes were pronounced, they were not as rapid or exten­

sive as were changes in cholesterol synthesis or reductase activity. 

Involvement of sterol-carrier protein (SCP) between squalene -» 

cholesterol Based on recent studies by Ritter and Dempsey (1971), 

Scallen et al. (1971) and Tai and Bloch (1972), 2-3 noncatalytic proteins 

have been implicated to act in the course of squalene -»• cholesterol. 
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These proteins are referred to as Sterol Carrier Proteins (SCP) or Soluble 

Protein Factor (SPF). So far, squalene epoxidase and 7-dehydro-choles-

terol reductase are the only enzymes which have responded to these pro­

teins. The SCP preparation isolated by Ritter and Dempsey (1971) mim­

icked the action of human high density apolipoprotein. In contrast, SCP 

isolated by Seal 1 en et al. (1971) possessed the properties of low-density 

lipoprotein (LDL). The soluble carrier protein appeared to function as a 

substrate carrier, stimulating interactions of dispersed water-insoluble 

intermediates with membrane-associated enzymes. The exact mode of action 

of these protein factors is unclear. Their effects on the regulation of 

cholesterol synthesis is presently under investigation. 

Cholesterol absorption, degradation and excretion 

Cholesterol absorption, degradation and excretion has been reviewed 

extensively by Dietschy and Wilson (1970). Consequently only summaries of 

the topics are given here. 

Cholesterol absorption is controlled by several factors. These in­

clude the physical form of dietary cholesterol, the pool size of bile 

acids, the permeability status of the lumen mucosal membrane, secretion 

and activity of the hydrolyzing enzymes like pancreatic esterase and 

cholesterol esterase, and finally the luminal concentrations of fatty 

acids, glycerides, and phospholipids derived from dietary fats (Dietschy 

and Wilson, 1970). According to Kim and Ivy (1952) and Wilson (1962), 

dietary fat may enhance exogenous cholesterol absorption by 1) stimulating 

bile flow to the intestinal lumen, resulting in increased cholesterol solu­

bilization into micelles and thus increased rates of chylomicron forma­



www.manaraa.com

22 

tion and 2) increasing supplies of amphipathic substances like mono-

glycerides and free fatty acids which are essential for micelle formation. 

The rate limiting step of cholesterol absorption may occur, at the 

movement of chylomicrons from mucosa into lymphatic circulation. Bile 

acids and lipoproteins have been implicated to be essential for the 

transfer (Sylven and Borgstrom, 1968). 

Cholesterol degradation to bile acids occurs primarily in the liver 

(Harold et al., 1955). Free form cholesterol is the preferential sub­

strate for bile acid synthesis (McGovern and Quackenbush, 1973b). The 

bile acids formed are subsequently conjugated with glycine or taurine, 

forming primary bile acids. In the distal intestinal tract, the primary 

bile acids are deconjugated by bacterial action (bacteriodes and bifido-

bacterise to secondary bile acids) which are either reconjugated and 

reabsorbed, or excreted as acidic steroids in the feces (Dietschy and 

Wilson, 1970). 

The control of cholesterol degradation or bile acid synthesis is 

under feedback inhibition by bile acids in rat, monkey and man (Dietschy 

and Wilson, 1970). In rats, bile acid excretion increased with bile duct 

cannulation (Kay and Entenman, 1961), cholestyramine feeding (Johansson, 

1970), and decreased with bile acid infusion into the small intestine 

after bile duct cannulation (Shefer et al., 1970). Short term cholesterol 

feeding in rats led to enhanced bile acid synthesis (Takeuchi et al., 

1974). Feedback control by bile acid and substrate induction by choles­

terol are affected by 7 a-hydroxylase, which is the major rate-limiting 

enzyme of bile acid synthetic pathway (Shefer et al., 1970; Takeuchi 

et al., 1974). 
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Cholesterol excretion takes place in two forms, as acidic steroids 

and neutral steroids in the feces. Acidic steroids are derived from bile 

acids, while neutral steroids (containing cholesterol and its derivatives 

such as coprostanol and coprostanone) are derived from bile and intestinal 

epithelial cells. The proportion of acidic to neutral steroids excreted 

varies with the type of diets consumed. Diets high in polyunsaturated 

fats (McGovern and Quackenbush, 1973a), cholesterol (McGovern and 

Quackenbush, 1973b), and fiber (Kritchevsky et al., 1974) increased total 

cholesterol excretion, with greater excretion as acidic than neutral 

steroids. 

Meal pattern and cholesterol metabolism 

Recent work in our laboratory has shown that meal feeding, in con­

trast to ad libitum feeding, may increase serum cholesterol concentra­

tions. Adult male rats were depleted to 60% of their original weight. 

Depletion was followed by a 10- or 30-day realimentation regimen with 

diets containing 2 or 40% of kcal as fat (Reeves and Arnrich, 1974; 

Carlson, 1975). Irrespective of types of diets tested, the authors found 

that adult rats consuming their food calories in an 8-hour meal, showed 

higher serum cholesterol concentrations compared to rats consuming their 

food calories ad libitum. Similarly, increases in serum cholesterol level 

with meal feeding have been observed in chickens allowed access to food 

for 2 1-hour periods per day (Cohn et al., 1961), in monkeys fed 2-3 1-

hour periods per day (Gopalan et al., 1962) and in humans consuming 3 

meals per day (Cohn, 1964). 

Not all investigations have come to the same inference. Okey and 

coworkers (1960) failed to observe differences in mean serum cholesterol 
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concentrations between rats fed 3 hours per day and rats fed ad libitum. 

In a recent study, Wadhwa et al. (1973) also failed to distinguish an 

effect of meal pattern on serum cholesterol levels in humans. 

The effect of meal pattern on serum cholesterol levels appears to 

vary with length of feeding period. Reeves and Arnrich (1974) observed 

greater differences in serum cholesterol concentrations between meal fed 

and ad libitum fed rats, at 30- compared to 10-days of feeding. Gopalan 

et al. (1962), working with monkeys, reported bigger differences between 

the two meal patterns at 8 compared to 4 weeks of feeding. In contrast, 

chicks fed 2 1-hour period» had elevated serum cholesterol levels over ad 

libitum fed birds only during the first 3-6 weeks. The difference dis­

appeared when feeding was extended to 10 weeks. In summary, the effects 

of meal feeding on serum cholesterol levels appear to vary with species, 

age, feeding length and number of meals per day. 

One factor contributing to increased serum cholesterol concentration 

with meal feeding could be plasma free fatty acid levels during fasting. 

Increased free fatty acids in plasma stimulate triglyceride secretion by 

the liver (Prigge and Grande, 1973; Wadhwa et al., 1973). In the rat, 

VLDL are secreted by the liver and function to circulate triglyceride to 

other tissues. Cholesterol and phospholipids are required to stabilize 

the structures of VLDL. Increased serum cholesterol concentration observed 

with meal feeding may be a consequence of elevated serum triglyceride for­

mation in response to free fatty acid concentrations (6oh and Heimberg, 

1973). 

The influence of meal pattern on other parameters of cholesterol 

metabolism, such as synthesis, excretion, degradation, have gained little 
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attention. Recent work with adult rats failed to show changes in rate of 

hepatic cholesterogenesis with meal feeding (Carlson, 1975). Other in­

vestigators working with young rats reported increased (Dupont and Lewis, 

1963; Dupont, 1965) hepatic cholesterol synthesis with meal feeding. 

Few data are available which relate the influence of frequency of 

feeding to cholesterol degradation and excretion. Bobek et al. (1973) 

compared rats fed for 2 hours versus ad libitum feeding. Recoveries of 

4_i'»_C-cholesterol, four days after administration, in liver, serum and 

small intestine revealed little variation between the two meal patterns. 

In addition, cholesterol degradation to bile acids and excretion of 

neutral steroids were identical between the meal patterns. Recent work 

by Carlson (1975) confirmed some of Bohek's results. Hepatic and small 

intestine cholesterogenesis, bile acid formation and excretion, and 

neutral steroid excretion varied little between ad libitum and meal 

feeding. 

Age and cholesterol metabolism 

Our literature search yielded limited information about effects of 

maturation or aging on cholesterol metabolism in rats. Data for growing 

rats were obtained primarily from one laboratory (Dupont, 1966; Dupont 

et al., 1972). In one study maturation and aging had a marked effect on 

cholesterol biosynthesis in response to dietary fat level and type 

(Dupont, 1966). Male weanling rats were fed test diets containing 2 or 

42% of calories as fat coming predominantly from either corn oil or beef 

tallow. Rats were fed these diets until they were 3 or 4 1/2 months of 
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4 1/2 months old rats, regardless of the dietary variables. At 3 months 

of age, corn oil and beef tallow caused 29 or 3-fold increases, respec­

tively, in hepatic cholesterogenesis compared to the low fat diet. At 

4 1/2 months of age, differences between low fat diet and either corn oil 

or beef tallow diets were less dramatic, but evident. 

In another study Dupont et al. (1972) found little reduction of 

cholesterol synthesis from acetate when 3 and 18 months old rats were 

compared. However, an oscillating effect in cholesterogenesis rates with 

maxima at 3 and 12 months and minima at 6 and 18 months was evident. With 

advancing age, fecal neutral steroid excretion decreased. Carcass acidic 

steroid contents were much higher in 18-months compared to 6 months old 

rats. Serum cholesterol level was doubled between 12 and 18 months of 

age. In general increase in serum cholesterol concentration is consistent 

with advancing age, regardless of diet. Changes in hepatic cholestero­

genesis are not so predictable with age, and these changes are influenced 

by diets. 

Dietary fat and cholesterol metabol ism 

Dietary fat level Several investigators have demonstrated an in­

crease in fasted serum cholesterol levels following dietary treatments 

with high- compared to low-fat containing diets (Prigge and Grande, 1973; 

Hill, 1960). Prigge and Grande (1973) compared diets containing 11 or 

40% fat from either coconut oil, olive oil or sunflower oil in dogs. In­

creasing fat level was accompanied by elevated levels of serum cholesterol, 

phospholipids and postprandial serum free fatty acids (FFA). A positive 

correlation of FFA to serum lipids was observed. The authors suggested that 
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alterations in serum FFA associated with high fat feeding might be in­

volved in the mechanism whereby dietary fat influenced serum cholesterol 

levels in the dog. 

Hill et al. (1960) tested the effects of diets containing 15% corn 

oil. Wesson oil. Snowdrift or lard to a zero fat diet in rats. Regardless 

of fat source, hepatic cholesterogenesis from ^^C-acetate was elevated 

with fat feeding, 12 hours after inhibition of hepatic lipogenesis. Under 

conditions of controlled feedings, Bortz (1967), Goldfarb and Pitot (1972) 

and Carlson (1975) reported similar findings with fat feeding in young and 

adult rats. 

Fat feeding effects on hepatic cholesterogenesis appear to be exerted 

prior to the formation of mevalonate and result in increased amounts of 

HMG-CoA reductase (Goldfarb and Pitot, 1972). 

Elevated intracellular levels of acetyl CoA and fatty acyl CoA, as a 

result of decreased lipogenesis, leads to increased availability of sub­

strates for cholesterol and ketone body formation (Bortz, 1967). In­

creased hepatic cholesterol synthesis required HMG-CoA reductase synthesis 

before accelerated cholesterol formation was noted. 

In rats dietary fat feeding decreased hepatic bile acid content but 

increased cholesterol content (Bortz, 1957; Goldfarb and Pitot, 1972). 

Dietary fat saturation Merrill (1959) observed enhanced rates of 

hepatic cholesterogenesis with feeding linoleic acid versus coconut oil. 

Similarly, Wood and Migocovsky (1958) reported enhancing effects on 
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hepatic cholesterol biosynthesis with polyunsaturated and unsaturated 

fatty acids. Thus, rape-seed oil, corn oil, erucic acid and oleic acids 

stimulated greater rates of cholesterol synthesis than coconut oil. 

More recent reports by other laboratories have arrived at the same con­

clusion (Boyd, 1962; Tria et al., 1971; Dupont et al., 1972), In con­

trast, Carlson (1975) and Dupont et al. (1975) failed to demonstrate dif­

ferences in cholesterol biosynthetic rates with safflower oil and beef 

tallow feeding. Several theories have been proposed to explain the 

stimulatory effect of polyunsaturated fats on cholesterol synthesis. 

Increased cholesterogenesis may be related to increased bile acid forma­

tion, since the half-life of bile salt (cholate) was reduced in animals 

fed safflower oil (McGovern and Quackenbush, 1973c) and in humans fed corn 

oil. 

A decrease in cholesterogenesis in the small intestine with polyun­

saturated fat feeding has been reported by several laboratories (Cayen, 

1971; Chevallier and Lutton, 1973; Carlson, 1975). In all these studies, 

depressed intestinal cholesterogenesis was attributed to increased in­

testinal cholesterol concentration, indicative of feedback control. 

In general, most studies with rat liver perfusates showed no quanti­

tative difference in bile acids production between saturated and polyun­

saturated fat feeding. In another study with rats given oral infu­

sions of either linoleate or oleate, no variation in bile acid excretion 
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between treatments was observed (Iritani and Nogi, 1974). In contrast, 

other investigators had reported that animals responded to polyunsaturated 

fat feeding with increasing bile acid formation. Substitution of poly­

unsaturated ruminant fat for regular fat (Nestel et al., 1969; 1973) or 

sunflower seed oil for butterfat (Antonis and Bersohn, 1962) in normalipic 

men, led to elevated bile acid excretion in the excreta. In adult rats, 

elevated bile acid formation and excretion occurred with safflower oil 

compared to beef tallow feeding. 

The result of polyunaturated fat feeding is associated with shortened 

bile acid half life resulting in increased bile acid formation and excre­

tion. McGovern and Quackenbush (1973c) obtained direct evidence of bile 

acid synthesis in liver via biliary cannulation. The authors reported 

13% increase in bile acid production and 8% decrease in bile acid secre­

tion in liver with safflower oil compared to beef tallow feeding in young 

rats. 

Excretion of neutral steroids may be elevated with polyunsaturated 

fat feeding. However excretion of this metabolite is usually less 

dramatic compared to bile acid excretion. Increased neutral steroid 

excretion has been reported for corn oil and safflower oil feeding 

(Connor et al., 1969; Moore et al., 1968). 
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Methods and Materials 

Experiment 1 was designed to study the effects of the following 

variables on cholesterol metabolism: 

(1) dietary fat level: 2 vs. 38% of calories from fat. 

(2) saturation of dietary fat: beef tallow (BT) vs. safflower oil 

(SO). 

(3) frequency of feeding: 24 vs. 3 hours of food availability. 

(4) length of feeding: 30 vs. 60 vs. 90 days. 

A double label system using ^H-acetate and 4-^'^C-cholesterol was used 

to assess distribution, synthesis, degradation and excretion of cholester­

ol. 

Pesign of experiment 

Eighteen dietary treatments were used as shown in Figure 2. Each 

treatment group consisted of 10 rats. Littermates in sets of two were 

used. They were assigned to the same diet and length of feeding, but to 

two different feeding patterns. Three experimental diets were tested. 

Two of the diets contained 38% of the calories from fat (SO or BT). The 

percentages of linoleic acid in these fats varied between 79 (SO) and 

4 (BT). In the remaining diet 2% of the calories was from fat, given as 

safflower oil (LF). The rest of the calories were met by increasing the 

carbohydrate and protein components. All diets were isocaloric with re­

spect to protein, mineral mix and nonnutritive fibers. Two feeding pat­

terns were used. Rats were given food jars for either 24 (AL) or 3 (MF) 
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hours out of a 24 hour period. Animals were placed on these dietary 

regimens for 30, 60 or 90 days. 

For each animal the following parameters were measured: 

(1) food intake, body weight gain and food efficiency. 

(2) wet weight of liver, spleen, epididymal fat pads, kidneys, small 

and large intestines (with contents), heart and stomach (without 

contents). 

(3) total lipid of liver. 

(1) and (2) provide information on growth pattern of maturing rats 

with the dietary variables. 

(4) cholesterol concentration for serum, liver, and small intestine. 

These parameters estimate distribution in designated sites. 

(5) I'+C and ^H-cholesterol as digitonin precipitable steroids (DPS) of 

serum. These data estimate the contribution of cholesterol by 

the liver and small intestine to the circulating pool. 

(6) in DPS of liver and small intestine. These counts represent 

newly synthesized cholesterol in the major sites of synthesis. 

(7) ^**0 in DPS of liver and small intestine. These counts represent 

the nondegraded cholesterol. 

(8) i^C-counts in saponifiable lipid of liver, small intestine, large 

intestinal content and feces. These counts represent bile acid 

metabolites of cholesterol lost from body pools. 

(9) plasma triglycerides. 

(10) plasma thyroxine. 



www.manaraa.com

32 

Animal treatment 

Weanling male rats of the Wistar strain^ were raised on a modified 

Steenbock XVII ration (Table 1). This diet was supplemented weekly with 

15 g lean ground beef, 20 g raw carrots and 10 g fresh cabbage. In addi­

tion vitamins A and D were given orally once a week in 50 mg corn oil con­

taining 165 meg retinol equivalents as retiny! palmitate and 1.25 meg 

vitamin D3. When rats weighed 100±5 g (30±3 days old), they were trans­

ferred to an experimental room with a reversed lighting schedule. Dark 

hours were set between 9 AM and 7 PM. Room temperature was maintained at 

24+2° and relative humidity at approximately 40%. Animals were housed 

individually in suspended wire mesh cages, with free access to distilled 

water. Cages were changed once a week, and water checked for turbidity. 

Skin and respiratory problems were monitored periodically. This care 

procedure was taken to provide clean and sanitary living conditions for 

the animals throughout the length of the study, thus reducing the risk of 

infection and animal loss, both of which would complicate an aging study. 

A day before the experiment, animals were fasted overnight (5 PM-

9 AM). Assignment to treatment groups was made randomly using a lot sys­

tem. Each set of two littermates was assigned to the same diet and length 

of feeding, but two different feeding frequencies. Rats were fed and 

weighed by 9 AM, i.e., at the beginning of the dark cycle. Food jars of 

rats on the 3 hr feeding schedule (MF) were removed by 12 PM. Concurrent 

with their diet, animals received daily supplements of vitamins in 

separate cups. Food intake and body weight gain were recorded every other 

^lowa State University, Dept. of Food and Nutrition stock colony. 
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Figure 2. Schematic design of experiment 1: 1=2% safflower oil as calories; 2 - 38% safflower oil 
as calories; 3 = 38% beef tallow as calories; 4 = littermates in sets of two; 5 = ad 
libitum (24 hr feeding out of a 24-hr period); 6 = meal fed (3 hr feeding out of a 24-hr 
period); 7 = 10 rats per group. 
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day. A food efficiency ratio of body weight gain to food consumed in kcal 

was calculated for each diet. 

Diets 

Three experimental diets were tested. Composition of each diet is 

given in Table 2. Percentages of calories from corn starch, casein and 

fat are listed in Table 2. Protein, salt mix, nonnutritive fiber were 

equalized on the basis of calories. 

Fat was the only component altered in this study. Dietary fat pro­

vided 2 (LF) or 38 (SO or BT)%of calories. Fat calories were furnished 

by beef tallow (BT) or safflower oil (LF and SO). Fatty acid composition 

of safflower oil, beef tallow and the Steenbock XVII ration are shown in 

Table 3. 

Protein level for the test diets was approximately 21% of calories. 

This was provided by vitamin free casein which contained approximately 

91.4% of protein by assay. DL-methionine was supplemented at the level of 

1.5 g/100 g casein. Cholesterol at 0.02 mg/100 g diet was added to LF and 

SO diets to compensate for the cholesterol level present in BT. 

Daily supplements of fat- and water-soluble vitamins were given in 

addition to the experimental diets. Tables 4 and 5 show the composition 

and daily allowances of the water- and fat-soluble vitamins. Fat soluble 

vitamins included vitamins A, D and E. Both A and D were furnished by 50 

mg cod-liver oil. Vitamin E, as DL-atocopherol acetate, was diluted with 

corn oil to provide a daily dosage of 1 mg DL-a-tocopherol acetate. Water 

soluble vitamins were measured using a calibrated 1/4 teaspoon that closely 

approximated 500 mg. Both fat- and water-soluble vitamins were given to­

gether in a cup. They were usually prepared 1/2 hour before feeding. 
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Table 1. Stock ration for maie rats: modified Steenbock XVII (1974-75) 

Dietary components % by weight 

Corn meal^ 48.3 

Linseed meal^ 13.8 

Skim milk^ 10.3 

Wheat germ^ 8.6 

Brewers yeast® 8.6 

Casein, high protein® 4.3 

Corn oil® 3.5 

Alfalfa meal^ 1.7 

NaCl (iodized)^ 0.4 

CaCOg + trace elements^ 0.4 

Corn oil + vitamin Dg^ 0.1 

®Teklad, Madison, Wisconsin. 

^Froning and Deppe Elevator, Ames, lowa. 

^Des Moines Cooperative Dairy, Des Moines, lowa. 

^General Mills, Inc., Minneapolis, Minnesota. 

®Mazola, Best Foods Division Corn Products Co., New York. 

^National Alfalfa, Lexington, Nebraska. 

^Morton salt, local grocer. 

^Matheson Coleman & Bell Division, Matheson Company, Inc., Norwood, 
Ohio. 

^Crystalline vitamin Dg (cholecalciferol) diluted to 2,000 lU 
(50 meg/kg diet) with corn oil. 
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Table 2. Composition of experimental diets based on weights and calories 

Dietary components LF 

Diets 

SO BT 

g/100 g diet 

Cornstarch® 71.5 46.1 46.1 

Casein, vitamin free^ 22 27 27 

Safflower oil^ 1 20 0 

Beef tallow^ 0 0 20 

Cholesterol® 0.02 0.02 0 

Salt mix® (William & Briggs) 3.5 4.3 4.3 

Nonnutritive fiber® (cellulose) 2.0 2.5 2.5 

Dl-methionine^ 0.33 0.40 0.40 

Kcal/100 Kcal 

Cornstarch 77 41 41 

Fat 2 38 38 

Casein protein 21 21 21 

^Clinton Corn Proaucts, Clinton, Iowa. 

^91.3% protein, Teklad Test Diets, Madison, Wisconsin, 

^Pacific Vegetable Oil Corp., Richmond California (a-tocopherol added 
as anti-oxidant at 0.1% by weight). 

^Oscar Mayer, Madison, Wisconsin. 

®J. T. Baker Chemical Co., Phillisburg, New Jersey (added at level of 
1 mg/1 g BT). 

^1.5 g/100 g casein; Teklad Test Diets, Madison, Wisconsin. 
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Table 3. Fatty acid pattern of stock ration, beef tallow and safflower 
oil by gas liquid chromatography 

Diets or % fatty acids 
ingredients 14.0 16.0 16:1 18:0 18:1 18:2 18:3 

Stock ration® 0.6 17.8 2.1 2.7 21.7 49.4 5.7 

Safflower oil neg 6.1 0.0 2.1 12.8 79.0 0.0 

Beef tallow 3.1 23.1 3.5 20.2 43.5 3.8 1.1 

^Steenbock XVII, 1975. Lipid extracted by Folch et al. method 
(1957). 
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Diet preparation A standard procedure was set up to reduce varia­

tions between diet preparations. Diet was prepared in 15 kg batches in a 

20 kg stainless steel mixer. Nonnutritive fiber, William-Briggs salt mix 

and casein were mixed for 3 minutes at low speed. Cholesterol and 

methionine in an oil mixture were added next. Cholesterol was first ground 

in a mortar, then combined with methionine in some oil (5 - 10 mis). 

Methionine does not dissolve in oil but was introduced to the dry in­

gredients in this way to reduce loss during transfer and stirring in the 

mixer. Following the addition of cholesterol and methionine, the re­

maining oil (or melted BT) was added. The ingredients were mixed for 3 

minutes at low speed. Corn starch was added next. The final mixture was 

mixed for 5 minutes at medium speed or until no clumps were visible. The 

temperature of the fresh diet was measured. Each diet was stored in 

Nalgene containers and refrigerated at 4°. 

Beef tallow was melted at 40°, weighed and allowed to cool before it 

was added to the dry ingredients. 

Vitamin preparation A mixture of water soluble vitamins was 

usually prepared in 2,000 g batches. The vitamins were weighed and ground 

with about 30 g dextrin in a mortar for 20 minutes or until the mixture 

was homogeneous. The mixture was transferred to a large stainless steel 

mixing bowl and mixed with the remaining dextrin for 1 hour. The vitamin 

mixture was stored in amber jars at 4° or at -20° if more than one week's 

storage was required. Vitamin A and D were given in cod liver oil. A 

calibrated dropper which delivered about 50 mg in 2 drops was used. This 

amount provided 85 lU of vitamin A and 8.5 lU of vitamin D per rat per 

day. 
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Table 4. Composition of water soluble vitamin mixture for growing rats 

Vitamin dose composition/rat/day 

Dextrin to make 500 mg^ 

Thiamin^ 40 meg 

Riboflavin 60 meg 

Pyridoxine HCl 40 meg 

Ca-Pantothenate 100 meg 

Nicotinie aeid 500 meg 

Folic aeid 8 meg 

Biotin mixture^ 1 meg 

Bi2^ 0.72 meg 

L-aseorbie aeid 1 mg 

Meso-Inositol 10 mg 

Para-aminobenzoie acid 10 mg 
(USP XIV, PABA) 

Choline CI mo 3 

500 mg = 1 dose 

®A11 vitamins obtained from General Biochemicals, Inc., Chagrin 
Falls, Ohio (known as Teklad, Madison, Wisconsin since 1975). 

^Biotin mixture prepared by mixing 1 mg biotin with 99 mg dextrin. 

^Bi2 in mannitol at 0.1 mg B12/IOO mg of mixture. 

"^Teklad, Madison, Wisconsin. 
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Table 5. Fat soluble vitamins for growing rats 

Vitamin dose/day/rat 

A 85 lU 
in 50 mg cod liver oil 

D 8.5 U 

b c 
DL-atoxopherol 1 mg in 50 mg corn oil 

*Squibbs cod liver oil USP (50 mg/day). 

'^General Biochemicals, Inc., Chagrin Falls, Ohio. 

^Mazola, Best Foods Division Corn Products Co., New York. 
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Vitamin E was provided as DL-o-tocopherol. One mg per rat per day 

was administered to the growing rat. This was diluted with corn oil so 

that 50 mg contained the daily allowance. The solution was stored in 

amber medicinal bottles at 4®. 

Feeding frequencies (meal patterns) 

Two meal schedules were used. Rats were either allowed access to a 

given diet for 24 hours (AL) or for only 3 hours (MF) out of a 24 hour 

period. Food jars for AL rats were given at 9 AM and replaced with fresh 

food jars at the same time two days later. Meal-fed rats had access to 

food from 9AM-12PM each day. Body weight change and food consumed were 

calculated on a two day basis. 

Lengths of feeding 

Three feeding periods were used. Rats were raised on a given diet 

for 30, 60 or 90 days. Rats were killed on the morning of the 31st, 61st 

and 91st day of the experiment. 

Isotope injections 

Six days prior to sacrifice (i.e., 25th, 55th and 85th), rats were 

given a single IP injection of 4-^'^C-cholesterol^ (2.5 vC/.5 ml saline) 

just before feeding. Feces were collected hereon for the next 6 days. On 

the day the rats were killed they were allowed access to food for 1 hour 

(9-10 AM). Subsequently a single IP injection of ^H-acetate^ (50 yC/ 

.5 ml saline) was administered. Two and a half hours later, rats were 

^Amersham/Searle, Arlington Heights, Illinois. 
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anesthetized with an IP injection of Na Pentobarbital^ (25 mg/100 g b.w.) 

according to the procedure of Carlson (1975). 

Tissue collection 

Blood was obtained from the right ventricle by heart puncture and 

stored in cold 10 ml heparinized tubes (140 lU Na heparin/ml). Blood was 

spun in the cold in a clinical centrifuge for 20 minutes at 2000 rpm. 

Plasma was stored in tightly screwed 2 dram vials at -20°. 

Immediately after the removal of blood, the liver was excised, rinsed 

in cold distilled water, dried on filter paper and weighed. It was then 

wrapped in aluminum foil, quick-frozen in liquid nitrogen, packaged in 

sealed plastic pouches and stored at -20°. The stomach (contents washed 

out), spleen, small and large intestines with contents, epididymal fat 

pads, kidneys and heart were removed in the order listed. The viscera 

were weighed and stored as described for liver. Mysenteric fat adhering 

to the intestines were carefully trimmed before weighing. 

Feces collected earlier were sealed in plastic pouches and stored at 

-20°. 

Radioactive countinq and quench corrections 

An automatic dispenser was used to dispense 10 ml scintillation 

cocktail (spectrafluor butyl PBD in toluene) to each sample. Two samples 

were prepared for each parameter. Samples were counted in duplicate for 

3 
15 or 20 minutes, depending on activity. Liquid scintillation counters 

^Nembutal sodium, Abbott Laboratories, Chicago, Illinois. 

2 
Amersham/Searle Corporation, Arlington Heights, Illinois. 

O 
Packard Instrument Company, Downers Grove, Illinois. 
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(Packard Tri Card) model 3320 and 2405 (automated and settings) 

were used. Channels and gains were set for ^'•C and countings. 

spillover into channel was about 8.5% and 2% for models 3320 and 2405 

respectively. i'*C and efficiencies for double label counting were 63 

and 48% for model 3320 and 65 and 58% for model 2405. 

Loss in counting efficiency due to quenching (methanol, color agents, 

traces of PPT, traces of phase separation, etc.) was corrected for by 

using both internal and external standardizations, and i^c-toluene^ 

were used as internal standards. The third channel of the instrument was 

used for external standard counts for each sample. A plot of count effi­

ciency against either count rate in dpm (model 3320) or count ratio (model 

2405) was obtained from a series of and i^C standards with known quan­

tities of methanol. Methanol was added in amounts of 0.2, 0.4, 0.6, 0.8, 

1, 1.5, 2, 4, 6 or 8 mis for each isotope series. In all instances, 10 ml 

butyl PBD in toluene was added as cocktail. Since methanol was used to 

solubilize cholesterol in a toluene base cocktail, it was also used as the 

quenching agent for the standard curves. Each instrument has its charac­

teristic curves. From the count rate or count ratio, a corresponding 

count efficiency factor was determined, which was used for calculating the 

dpm for each isotope in a sample: 

count efficiency = 

. cpm 
^ count efficiency 

^Amersham/Searle Corporation, Arlington Heights, Illinois. 
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Variations between individual instruments were 5% for and 10% for 

3H. Therefore, whenever possible samples measuring the same parameter 

were counted on the same instrument. The counting difference was taken 

into consideration during calculation. 

Chemical Analysis 

Lipid extraction 

The method of Folch et al. (1957), as modified by Stadler (1969), was 

used to delipidate the liver (L), small intestine (SI), epididymal fat 

pads (EF) and heart (H). A diagram of the extraction procedure is shown 

in Figure 3. In general, a weighed amount of tissue was minced finely on 

a cold watch glass and homogenized in CHClgzCHsOH (1:1) for 5 minutes. 

(In the case of SI, the whole organ with contents was thoroughly minced 

and mixed before a representative 4 g sample was taken.) A homogenizer^ 

with a 50 ml stainless steel cup was used. The homogenate was centri-
p 

fuged at -4° for 12 minutes at 12,000 rpm. The supernatant was decanted 

into a 50 ml round bottom glass tube containing 10 ml (12 ml for SI) of 

cold 0.2 M MgClg. The precipitate was reextracted with 12 ml (20 ml for 

SI) CHClgiCHaOH (2:1) with 3 minutes homogenization and 30 minutes centri-

fugation. The second supernatant was combined with the first, and the 

mixture was shaken vigorously for at least 1 minute. The mixture was 

stored overnight at 4° for complete phase separation. 

^Lourdes multi-mix homogenizer, Brooklyn, New York. 

2 Refrigerated centrifuge, model HRl, International Equipment Co., 
Boston, Massachusetts. 
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Tissue homogenate 

25 ml CHgOh 

"1. Liver (L) 4 g 
2. Small intestine (SI) 4 g 
3. Epididymal fat pads 

(EF) 2 g 
»4. Heart (H) 4 g 

CHClgCl;!) 

15 ml CHgOHiCHCl3(1:2) 

Supernatant 
10 ml 0.2 M MgClg 

Overnight phase^separation, 4 

\ 
Bottom CHClq Phase 

2 tbsp anhydrous Na2S04, shake, 
filter, filtrate evaporated over 
rotary evaporator at 28°. Lipid 
made to 10 ml with dry CHCI3. 

Aliquots 

2-1 ml 
to A1 tares 
for gravi-
metri c 
analysis 
(all tis­
sues) 

2-0.*2 ml 
to scintilla­
tion vials. 

2 ml 
cholester­
ol analy-

evaporate CHCI3 sis (L, 
to dryness SI,H) 
overnight under 
hood, add 10 ml 
cocktail, count 

and cor­
rect for quench 
by external std. 
(L, EP) 

Remainder 
stored in 
sealed vial 
(with A1 or 
Teflon 
caps) at 
-20° 

Top Aqueous Phase 
(Bile acids + metab-
olites) I 

Evaporatejto dryness 

Make up to 15 ml 
with CH3OW 

2-1 ml aliquots to 
scintillation vials, 
10 ml cocktail added. 
14C+3H counted. 
Quench correction by 
external and internal 
stds. Land SI 

Figure 3. Schematic diagram of lipid extraction procedure using the 
method of Folch et al. (1957) as modified by Stadler (1969), 
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i^c-conjuqated acid steroid The upper aqueous phase contained 

most of the bile acids, while the lower chloroform layer carried most of 

the lipids. For SI, a second extraction of the lower phase with 5 ml 

MgClg was necessary to remove most of the bile acids. Occasionally, when 

cloudiness appeared in the chloroform layer, a few drops of methanol were 

added to clear the solution. For H and EP, the aqueous phase was dis­

carded. For L and SI, the aqueous phase was transferred to scintillation 

vials, evaporated to dryness at 70° in a steam bath and made to 15 ml with 

methanol. Two 1 ml aliquots were used for and counting. 

Neutral lipids and cholesterol The chloroform layer was shaken 

vigorously for 1 minute with 2 tablespoons of anhydrous NagSO^,. The 

slurry was filtered, and the filtrate evaporated over a rotary evaporator 

immersed in a water bath at 28°. The residue was a yellowish, oily layer. 

This was made to 10 ml with dry chloroform. From this the following 

aliquots were removed for various analyses: 

(1) two 1 ml aliquots for gravimetric quantitation of total lipid 

(2) two 0.2 ml fractions for total and counts 

(3) one 2 ml for cholesterol analysis 

The remaining extract was stored at -20° in a tightly sealed vial with 

Teflon- or aluminum-lined caps. 

Cholesterol analysis Cholesterol was determined according to a 

modified procedure of Sperry and Webb (1950). Free and total cholesterol 

were determined as digitonin precipitable sterols (DPS). A scheme for 

cholesterol analysis is shown in Figure 4. A 2 ml lipid extract was 

pipetted into a 25 volumetric flask, evaporated to dryness under N2 and 

made to volume with acetone (redistilled)-ethanol (95%) (1:1). Eight 3 ml 
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2 ml lipid extract (Folch et al., 1950) 

i 
Evaporate to dryness under Ng 
in 25 ml volumetric flask 

i 
Make up to volume with acetone-ethanol (1:1) 

Volume used 
(ml): 3 3 

Tube label: W X 

Free 

3 

Y 

"ST" 
Total 

3 

Z 

Add 3 ml digitonin 
to each, mix, cover 
with foil, allow to 
precipitate (12 
hrs minimum) 

Centrifuge, discard super­
natant, wash PPT with ace­
tone-ethanol (1:2), centri­
fuge. Repeat wash two 
more times. Dry PPT under 

:ali( Saponification with KOH at 
40°C, 1/2 hr. Add 3 ml ace-
tone-ethanol (1:1) to each, 
titrate with acetic acid 
using phenothalene as indi­
cator, add 3 ml digitonin, 
mix, cover, precipitate 
12 hrs i 

llOOu Overnight 

Centrifuge and wash PPT 
once with acetone-ethanol 
(1:2). Dry PPT under 
hood overnight. 

W, X, A, B 

Colorimetric 
analysis 

4% 
Y. Z, C, D 

transfer PPT to counting 
vials with CH3OH 
add cocktail 
count i'*C and 
correct for quenching by 
external and internal 
stds. 

Figure 4. Cholesterol analysis by the modified method of Sperry and Webb 
(1950) for serum, liver, small intestines and heart 
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aliquots were transferred to 15 ml centrifuge test tubes. Tubes were 

marked w-z for free and A-D for total cholesterol. DPS from Y, Z, C, 

D were transferred with methanol to scintillation vials and counted for 

and The remaining samples were used for colorimetric analysis of 

1 2 
cholesterol on a spectrophotometer with a digital readout hookup. 

For serum or plasma aliquots (0.6-1 ml), lipid was extracted by the 

method of Sperry and Brand (1955). The aliquots were extracted with 10 ml 

acetone-ethanol (1:1), shaken vigorously and warmed in boiling water. The 

precipitate was filtered and the cooled filtrate made to 25 ml with ace-

tone-ethanol (1:1). The rest of the procedure was as described above. 

Feces and large intestinal contents 

Feces and large intestinal contents were washed into a 50 ml stain­

less steel homogenizing cup. Distilled water was added to fill 3/4 of the 

cup. The mixture was homogenized for 5 minutes at high speed, or until a 

homogenous mixture was attained. The homogenate was made to 200 ml with 

distilled water. Two 5 ml aliquots were pipetted into aluminum tares and 

3 
frozen at -20°. They were lyophilized at -15° for 4-6 hrs. Dry material 

from each tare was weighed and transferred to a 50 ml round bottom tube. 

Twenty ml of 1 N NaOH in 90% ethanol was added. Samples were shaken 

vigorously for 1 minute. The tubes were stoppered and heated at 45° for 

1 hr in a water bath. They were left at room temperature overnight. 

^Beckman D.U. spectrophotometer, model 2400, Beckman Instrument Inc., 
Fullerton, California. 

p 
Update Inc., Madison, Wisconsin. 

3 
Virtes lyophilizer, Gardiner, New York. 
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Neutral ^'*C-stero1d 

Contents were transferred to a 250 ml round bottom flask with 10 ml 

distilled water. To each sample 50 ml petroleum ether (a mixture of 

Skelly A and B (1:1), bp 30-60®) was added. The bottle was closed with a 

#6 rubber stopper wrapped in aluminum foil. It was shaken vigorously for 

1 minute and held in the cold for 20 minutes for phase separation. The 

upper phase was transferred to a 200 ml beaker. The lower phase was re-

extracted twice with 50 ml petroleum ether. The three petroleum ether 

fractions were combined and washed with 10 ml 1 N NaOH in 50% ethanol. 

The sample was evaporated to near dryness in a water bath (70°), trans­

ferred to a scintillation vial and evaporated to dryness. Ten ml cocktail 

was added. Each sample was counted for 20 minutes at settings for I'+c 

counting only. Quenching was corrected by both internal and external 

standardizations. Counts for were not determined. 

Acid ^'*C-steroid 

The aqueous phase was acidified to pH 2 with concentrated HCl. 

Litmus paper was used to determine pH range. Following the procedure of 

Grundy et al. (1965) as modified by Carlson (1975) the acidified layer was 

extracted with 75 ml CHCI3-CH3OH (2:1) without saponification. Phase 

separation was obtained by allowing the sample to stand at 4° for 30 

minutes. The lower phase was transferred to a 150 ml flask. The aqueous 

phase was reextracted two more times with 50 ml dry chloroform. The three 

extracts were combined and evaporated to near dryness, transferred to a 15 

ml volumetric flask, and evaporated to dryness.. It was made to volume with 

methanol. Two 1 ml fractions were removed for ^'•C-counting. 
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Plasma triglycerides 

Plasma triglyceride level was measured by the semi-automated proce­

dure of Kessler and Lederer (1965). A Technicon auto analyzer^ N-70 was 

used. Five tenths ml plasma was extracted with 9.5 ml isopropanol in the 

presence of a slurry containing zeolite, copper lime, and Lloyd reagent. 

The mixture was centrifuged, and the supernatant containing the lipid 

extract was sampled into an air-segmented alcoholic KOH solution. 

Saponification of triglycerides to glycerol occurred on stream in a 50° 

heating bath. Periodate reagent containing glacial acetic acid, sodium 

periodate and distilled water was added to oxidize the glycerol to for­

maldehyde. This was followed by condensation with diacetyl acetone and 

ammonia to yield a fluorescent product, 3,5-diacetyl-l, 4-dihydro!utidine. 

Both oxidation and condensation steps were carried out in the bath. After 

heating, the reaction mixture entered the fluorometer where air was auto­

matically removed and the fluorescence activated. The fluorometer was 

connected to a recorder. Two s^ts of standards containing 50, 100, 200 

and 300 mg triolein/dl isopropanol were monitored before and after sample 

runs. Blanks using KOH in isopropanol were run concurrently. Three 

aliquots per plasma sample were run. The second value was taken as the 

actual triglyceride value. Values one and three were discarded as they 

contained carry over contaminants from previous samples. A standard 

curve relating peak heights to mg triglyceride/dl blood was constructed 

from the standards. 

^Technicon Instruments Corporation, Tarrytown, New York. 
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Samples were run at a rate of 40/hr. 

Plasma thyroxine and lioth.yrom'ne 

Plasma thyroxine (T-4) and liothyronine (T-3) were measured using 

1 2 Thyopac-4 and Thyopac-3 kits. Both procedures provided assessment of 

thyroid function by the quantitative measurement of the relative satura­

tion of the thyroxine binding proteins. The main binding protein is 

thyroxine binding globulin (TBG) which binds both T-3 and T-4. Thyroxine 

binding prealbumin (TBPA) binds mainly T-4, while albumin binds both T-4 

and T-3. 

T-4 Thyopac-4 assay 

Principle A tracer quantity of L-thyroxine 1-125 (125T_4) is 

added to TBG. T-4 in the sample when added to a TBG-i25j_4 reagent will 

compete with i2ST-4 for the binding sites on TBG. As more T-4 is added, 

competition for available TBG sites increases with the result that a pro­

portionally smaller amount of i25-]-_4 -js bound to TBG. The amount of 

125T-4 bound to TBG or the amount of 1257.4 can be related to the amount 

of T-4 added to the TBG-125T-4 amount in standard samples. i^sy-TBG is 

separated from izsfree T-4 by absorbent granules. 

Procedure One ml 95% or absolute ethanol was added to 0.5 ml 

unknown plasma in an extraction tube. The tube was stoppered and shaken 

briskly, mixed for 2 minutes by rotation and centrifuged for 5 minutes at 

^ThyopacTM_4 kit, codes IM.64 and IM.641, Amersham/Searle, Arlington 
Heights, Illinois. 

^Thyopac^^-3 kit, codes IM.62 and IM.621, Amersham/Searle, Arlington 
Heights, Illinois. 
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2000 g. One-half ml of supernatant was transferred to a Thyopac-4 vial 

containing 50 yC L-thyroxine 1-125, absorbent granules suspended in buffer 

and human TB6. The mixture was rotated at ambient temperature for 30 

minutes. Granules were allowed to settle for 2 minutes. Two 1 ml ali-

quots were transferred to plastic 25 x 17 mm tubes and counted in a solid 

scintillation counter^ for 1-125. The quantitation of each sample was 

achieved by including in each run, two standard reference sera with pre­

determined Thyopac-4 values. A linear relationship existed between the 

T-4 concentration of the sample and the inverse of the count rate of the 

sample. Hence, only two standards (one high and one low) were required to 

establish a linear plot. 

T-3 Thyopac assay 

Principle A modified Hamolsky (1957) procedure was used. 

Hamolsky added a constant amount of i25j_3 to whole blood samples to 

saturate the protein binding sites. The red blood cells served as second­

ary binding receptors. The mixture was incubated and the red blood cells 

were washed and counted for radioactivity. Thus using a known quantity of 

125T-3, and an adsorbent granule as secondary binding sites, the ability 

of the serum to bind the labeled T-3 was an indication of the degree of 

saturation of the protein binding sites by T-4. Consequently an assess­

ment of thyroid status could be made. 

Procedure A 0.1 ml aliquot of serum was added to a Thyopac-3 

vial. Each vial contained 0.5 liothyronine 1-125, buffer and adsorbent 

granules. The content of the vial was mixed in a rotator for 10 minutes 

^New England Nuclear solid scintillation counter, Boston, Mass. 
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and allowed to settle for 2 minutes at ambient temperature. Two 1 ml 

aliquots were transferred to plastic tubes and counted in a well type 

solid scintillation counter. 

Calculations and Statistical Analysis 

Since all rats were injected with an equal dosage of ^^C-cholesterol 

and ^H-acetate (2.5 yC and 50 wC, respectively), adjustment for body 

weight differences was made. Radioactive data were calculated on the 

basis of a dosage of 0.5 yC/lOO g body weight for ^"C-cholesterol and 

10 yC/100 g body weight for 'H-acetate, respectively. 

Group means, standard errors of means for groups, and simple manipu­

lative conversions of the data were performed on a Monroe 1350 calculator. 

Unweighted analyses of variance were used for treatments and residual, and 

for fat, meal pattern, length of experimental time tested against re­

sidual. The statistical analysis system (SAS) developed by Barr and 

Goodnight (1971) was used. Data were run on an IBM 360. Differences 

between groups were calculated using the student T test, LSD or one way 

ANOVA on either a programmed Cannola 167P or Wang 600 calculator. Effects 

of p<0.05 were taken as significant. 
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Results 

The data were categorized into the following groups: 1) growth rate, 

2) tissue lipid levels, 3) cholesterol metabolism, 4) serum hormone levels 

and 5) subjective observations. The reader is referred to the Procedure 

Section for parameters measured, and to Figure 2 for the experimental 

design. 

Assessment of growth rate was based on in vivo measurements of body 

weight, caloric intake, food efficiency, and from organ weights. 

Tissue lipid concentrations pertained to hepatic lipid content and 

plasma triglycerides (90-day treatment period only). 

Cholesterol metabolism was studied by measuring distribution, syn­

thesis, degradation (bile acids formation) and excretion of neutral 

steroids and cholesterol metabolites. An IP injection of 2.5 yC of 

4-i^C-cholesterol was given six days prior to sacrifice. Tissue choles­

terol was assessed as digitonin precipitable steroids (DPS). In most rat 

tissues DPS measures primarily cholesterol, while precursors, e.g., 

lanosterol, constitute a small fraction. In the intestinal mucosa, how­

ever, the DPS fraction contains certain plant sterols (campesterol, 3-

sitosterol as well as cholesterol precurors, lathosterol and 7-dehydro-

cholesterol (Mclntyre et al., 1971). 

The following interpretations have been given to the data: 

1. Recovery of ^"C-DPS in conjunction with total DPS fraction 

present in plasma, liver and small intestine (plus contents) to 

indicate tissue cholesterol retention. 
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2. Recovery of 'H-DPS in liver and small intestine with contents do 

indicate relative synthesis of cholesterol from ^H-acetate in 

the major synthetic sites over a 2 1/2 hour period. In the rat, 

liver and small intestine contribute about 80% and 10%, respec­

tively, to endogenous cholesterogenesis (Dietschy and Siperstein, 

1967). 

3. Recovery of i*C-acid steroids to indicate bile acids formation 

and excretion in liver, small intestine (plus contents) and feces 

plus large intestinal contents. Thus, relative rates of choles­

terol degradation could be estimated. In addition, recovery of 

i*C-neutral steroids in feces plus large intestinal contents 

allowed estimation of relative rates of neutral steroid excretion 

(mostly cholesterol). Data on cholesterol metabolism pertained 

only to acute changes occurring in the rapidly equilibrating 

pools of plasma, liver and intestines. 

Serum hormone measured was thyroxine, which was monitored for the 90-

day treatment period only. 

Subjective observations included physical conditions of the animals 

throughout the experiment (e.g., infection and general constitution), as 

well as gross morphology of organs at the time of death. 

In the following sections, the terms aging and maturation were used 

interchangeably. Likewise, the terms "30-, 60-, 90-day feeding periods" 

ware not distinguished from the terms "2-, 3- and 4-month old animals." 

With the design used, effects of extended feeding cannot be distinguished 

from effects of maturation. Similarly, the effects of maturation cannot 
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be isolated from effects of aging in this study. Though these animals 

were maturing, based on their chronological ages, they were, however, not 

fed a nonpurified (stock) diet. The possibility exists that detrimental 

changes, induced by semi-purified though nutritionally adequate diets, 

may have occurred earlier and with greater frequencies here than would 

have occurred with nonpurified control diets. 

Growth Rate 

Mean body weights, food intakes and food efficiencies are shown in 

Table 6. Mean organ weights are shown in Table 7. 

Body weight 

Initial body weights, preexperimental and weights following overnight 

fast were statistically similar by design. Analysis by least square 

difference for all groups showed that body weight means varying by more 

than 41- and 54-g were significantly different at p<.05 and p<.01, 

respectively. 

Body weight differences were significant (p<.001) for fat level, fat 

saturation, age and meal pattern. Body weight increase resulting from 

raising dietary fat level was greater with'BT than SO as source of fat. 

Body weight increase was also greater with AL-than MF-feeding (p<.05). 

Between 2 to 3 months of age, LF-fed animals on AL feeding schedule 

weighed as much as SO-or BT-fed animals on similar feeding frequencies. 

This similarity disappeared at 4 months of age, when body weight increase 

slowed down in both the LF-and SO-fed animals, but not in BT fed animals 

(p<.01). Conversely, meal fed animals on diet LF showed consistently 
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lower body weights than meal fed animals on the high fat diets. In 

general, decreased caloric intake with meal feeding decreased body weights 

(p<.001); however the magnitude of decrease depended on the type of diet. 

Based on diet-meal pattern interaction analysis, the difference in body 

weights between the two meal patterns with diet LF was twice as large as 

the difference between patterns with diets SO or BT, throughout the ex­

periment. Finally, lower body weights with SO compared to BT feeding were 

apparent regardless of age and meal pattern (p<.001). 

Food intake and food efficiency 

Food intake was calculated as the amount of food in kcal consumed per 

day. There were significant differences for dietary fat level (p<.05), 

when BT was used as fat source. Energy value of food consumed by animals 

on diet LF was less than that on diet BT, due in part to reduced food 

intake of the meal fed animals. Animals on diet BT tended to consume more 

food than animals on diet SO. Food intakes of animals between ages 2-4 

months were not decreased. Range values for both age groups were small, 

between 53-74 kcal. Group mean values for all treatment groups were be­

tween 65-74 kcal. 

Food efficiency was calculated as body weight gain per 100 kcal con­

sumed. Food efficiencies were not influenced by fat level, fat saturation 

and meal pattern. However, food efficiencies were significantly decreased 

between ages 2-4 months (p<.001). Decrease in food efficiencies was ob­

served regardless of diets (Table 6). 
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Table 6. Body weights, food intakes and food efficiencies (FE) 

2 months 
30 days 

3 months 
60 days 

4 months 
90 days 

Body 
weight 

g 
Food 

intake 
kcal 

FE 
g/kcal 

Body 
weight 

!3 . 

Food 
intake 
kcal 

FE 
g/kcal 

Body 
weight 

g 
Food 

intake 
kcal 

FE 
g/kcal 

LF-AL 312±19* 78+2 8±1 428+9 76± 4±.3 505±13 76±2 4±.3 

LF-MF 231±22 53+2 10+1 307±10 60+3 6±.4 393+19 61 ±3 4±.2 

SO-AL 302+7 79±2 9+1 430+13 66±2 5±. 3 487±26 72+3 3+.2 

SO-MF 257+8 60+2 10+1 389+6 63±2 6±.4 441+23 69+3 3±.2 

BT-AL 312+12 76+3 9±1 448±9 69+4 6±.3 583±14 74±3 3±.2 

BT-MF 287±9 68+3 8+1 412+11 70±3 5+.4 496±22 73±3 4±.4 

*Mean ± SEM. 
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Liver Liver weight increased with elevated dietary fat level 

(p<.001), with increase in age (p<.001) and with AL versus MF feeding 

(p<.001). Increase in liver weight with dietary fat level was equally 

effective with either source of fat. Group mean values for SO and BT 

groups were almost identical, 12.0 vs. 13.3 g, respectively. With LF and 

SO feeding, near maximal increases in liver weights were achieved by 3 

months of age (60 days feeding). Conversely, BT-fed animals showed an 

almost linear increase in mean liver weights between the ages of 2-4 

months. Differences in liver weight between the feeding patterns were 

apparent with diet LF compared to diet SO. During the first 3 months of 

age, lower weights of BT-fed rats did not respond to meal pattern 

variations. 

Kidneys Kidney weights were elevated when dietary fat level was 

increased (p<.001), when fat saturation was increased (p<.01) and when 

the animals aged (p<.001). Conversely, kidney weights were decreased with 

meal feeding (p<.001). Variable mean value for groups LF, SO and BT were 

2.6, 3.0 and 3.2 g, respectively. In addition, kidney weights at ages 2, 

3 and 4 months were 2.3, 3.0, 3.3. Variable mean values for the meal 

patterns were 3.1 and 2.6 g for AL- and MF-feeding, respectively. 

Small and large intestine (plus contents) Weights for small and 

large intestines were approximations of tissue weights only, since in­

testinal contents were included. Weights varied with amount of food con­

sumed prior to autopsy. Food intake was not controlled in these animals; 

therefore, it could not be assumed that intestinal contents would be 

similar for all dietary treatments. Consequently, weights of these tis-
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Table 7. Weights of liver (L), heart (H), small intestine with contents (SI), large intestine with 
contents (C), kidney (K), spleen (SP), epididymal fat pads (EF) and stomach without con­
tents (ST) 

2 months 
30 days 

H SI 

3 months 
60 days 

H SI 

4 months 
90 days 

H SI 

LF-AL 11±.6® 1.2+.1 8±.3 5±.l 14±.3 1.4+.1 9±.4 5±.2 14±.5 1.6±.l 10±.4 6±.4 

LF-MF 8±.3 .8+.1 7±.3 3±.2 10±.6 1.2±.l 8±.3 4±.3 11±.7 1.2±.l 9±.5 5±.3 

SO-AL 11±.4 1.2+.1 8±.3 5±.l 15±.6 1.4+.1 10±.3 6±.2 15±.7 1.5±.i 9±.3 6±.3 

SO-MF 10+.4 1.0±.l 8±.4 4±.l 13+.4 1.3±.l 10±.2 5±.2 13±.9 1.4±.l 9±.4 5±.2 

BT-AL n±.5 1.2+.1 10+.4 5±.3 13±.5 1.5+ J 10±.3 6±.3 17±.6 1.5±.l 11±.4 6±-3 

BT-MF 11±.4 l.li.l 10±.4 5±.2 13±.5 1.4±.l 10±.3 6±.3 15±.l 1.4±.l 10±-3 6±.2 

I< SP EF ST K SP EF ST K SP EF ST 

LF-AL 

LF-MF 

SO-AL 

SO-MF 

BT-AL 

BT-MF 

2.6± 

1.7± 

2.5± 

2.1± 

2.6± 

2.4±.l 

.74±.07 

.60±.04 

.79±.04 

•67+.04 

.89+.03 

.85-±.08 

2.7±.2 

1.3±.l 

2.6±.3 

2.5±.2 

3.7±.3 

3.0±.2 

l,4±.l 

1.4±.l 

1.4±.l 

1.5±.1 

1.6±.1 

1.8±.1 

3.3±.1 

2.3+.1 

3.3±.3 

2.9+.1 

3.3+.1 

3.1+.1 

.81+.14 4.7±.2 1.8+.1 3.6±.l 1.0+.07 6.6+.5 1.9±-1 

.80±.10 2.8±.3 1.7±.l 2.6±.l .86t.05 4.2±.5 2.1+.1 

.0 ±.07 5.6±.3 1.9±.l 3.4±.l .82t.07 8.9±.6 1.9+.1 

.81+.04 4.8±.5 1.9+.1 3.0+.1 .73+.03 5.7±.9 2.0+-1 

.95+.03 6.7±.3 1.8±.l 3.6±.l .98±.0413.4±.6 2.3±.l 

.93±.03 5.3±.5 1.9±.l 3.5±.l 1.1 ±.04 9.7±1 2.3±-l 

'Mean ± SEM. 
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Table 7. (Continued) 

ANOVA L H SI LI K SP EF ST 

Diet p<.001 p<.001 p<.001 p<.001 p<.001 NS p<.001 P< .001 

Age p<.001 NS p<.001 p<.001 p<.001 NS p<.001 P<-,001 

Meal pattern p<.001 p<.001 p<.01 p<.001 p<.001 NS p<.001 NS 

Diet X age NS NS NS NS NS NS p<.01 NS 

Diet X meal pattern p<.01 NS NS NS p<.001 NS NS NS 

Pattern x day NS NS NS p<.02 NS NS p<.02 NS 

Diet X age x pattern NS NS NS NS NS NS NS NS 

Fat saturation NS NS p<.01 p<.001 p<.01 NS NS P<- 01 

Fat level p<.001 p<.001 p<.001 p<.001 p<.001 NS p<.001 p<. 001 
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sues will not be discussed. However, data for intestinal weights plus 

contents were analyzed statistically (Table 7). 

Spleen The spleen did not respond to dietary manipulations or to 

aging. It appeared that this organ had reached maximal weight in 2 months 

old animals, that is, after the first 30-day period of the experiment 

(Table 7). Among dietary regimens, range values were between 0.60-1.1 g, 

with group mean values between 0.68-1.0 g. 

Stomach (minus contents) Stomach weights were increased with fat 

feeding, regardless of fat source and with increasing age (p<.001. Table 

7). Safflower oil feeding decreased stomach weights when compared to beef 

tallow feeding (p<.01). Meal pattern as a variable did not influence 

stomach weights. 

Epididymal fat pads Weight of epididymal fat pads (EF), repre­

sentative of total adipose tissue mass, was increased when.dietary fat 

level was elevated (p<.001. Table 7). Increase of EF weights with fat 

feeding was independent of fat source. Beef tallow, however, invoked a 

greater increase in EF weights than safflower oil. Between the ages of 

2-4 months, EF weights increased (p<.001). Meal feeding decreased EF 

weights (p<.001) with the greatest difference between patterns in the LF 

group. 

Heart Cardiac weights were elevated with an increase in dietary 

fat level (p<.001. Table 7), regardless of fat source. On the contrary, 

variation in dietary fat saturation had no effect on cardiac weights. 

Cardiac weights tended to increase with age. Meal feeding, however, de­

creased cardiac weights (p<.001) due in part to a proportional decrease in 

body weights. 
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Tissue Lipids 

Hepatic total lipid content 

Hepatic total lipid content was calculated based on 100 g of wet 

tissue. In general, hepatic lipid content increased when dietary fat 

level was elevated. This increase was apparent only when safflower oil 

(p<.01) was used as fat source. Hepatic lipid contents between groups 

LF and BT were not statistically different at all ages. Livers from SO-

fed animals accumulated more lipid than livers from BT-fed animals 

(p<.05). Increased hepatic lipid content, in all groups, was most pro­

nounced at age 3 months (60 days feeding period), decreasing slightly at 

age 4 months. There was an overall age related increase in total lipid 

content of the liver when all dietary groups were considered (p<.02). 

Livers of meal-fed rats contained less lipid than did those of ad libitum 

fed rats (p<.02). This decrease was observed for all periods of this 

experiment(Table 8). 

Plasma triglycerides 

Plasma triglycerides in mg/dl of blood was measured only in the 4-

month old groups (after 90-days of treatment). The combination of small 

group mean differences (range 236-265 mg/dl) and large standard deviations 

within groups (range ±15-25) failed to give significant differences with 

fat level, fat saturation, and meal pattern. Group mean values were 248, 

236, and 220 mg/dl for LF-, SO- and BT-fed animals, and 234 and 231 

mg/dl for ad libitum and meal fed animals, respectively (Table 9). 
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Tables. Hepatic total lipid content in g/100 g wet tissue 

2 months 
30 days 

g/100 g wet tissue 

3 months 
60 days 

4 months 
90 days 

LF-AL 3.5±.3* 4.3±.2 3.2+.4 

MF 3.6±.5 4.0±.2 2.9±.3 

SO-AL 5.5±.4 6.9±.6 6.4±.5 

MF 4.7±.3 5.8±.5 4.8±.5 

BT-AL 3.7±.3 5.0±.4 4.3±.5 

MF 3.1 + .4 4.3±.3 4.4±.4 

Fat level p<.01 

Fat saturation p<.05 

Age p<.02 

Meal pattern p<.02 

Diet X age NS 

Diet X meal pattern NS 

Age X meal pattern NS 

Diet X age x meal pattern NS 

®Mean ± SEN. 
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Table 9. Plasma triglyceride level (mg/dl), after a 1 hr meal 

4 months 
90 days 

LF-AL 249+48* 

MF 265+43 

SO-AL 238+38 

MF 237+50 

BT-AL 242±55 

MF 236+51 

LF 257 

SO 238 

BT 244 

AL 243 

MF 246 

Fat level NS 

Fat saturation NS 

Meal pattern NS 

Interactions were all NS 

*Mean ± SEM. 
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Cholesterol Metabolism 

Plasma cholesterol concentrations 

Plasma cholesterol concentrations in mg/dl of blood were uniformly low 

for all dietary treatment groups (Table 10, Figure 5 ). The range of mean 

values was narrow, between 35 and 52 mg/dl. Mean values of most groups 

were between 40 and 50 mg/dl. Consequently, plasma cholesterol concentra­

tions were not significantly affected by any of the variables used. In 

general, with each dietary treatment, plasma cholesterol concentrations 

tended to increase with age. The increase was small, however, about 23% 

on the average. 

With most dietary treatments, approximately half of plasma choles­

terol was in the free form. Group mean percentages of free cholesterol 

with the three dietary regimens were 43, 45 and 46% for diet LF, SO and 

BT, respectively. In general, significance was not obtained for any of 

the variables used. 

Plasma i^C-cholesterol 

Plasma i^C-cholesterol was assessed as ^**0 counts in digitonin pre-

cipitable steroids (i*C-DPS). In general, plasma ^^C-DPS was not in­

fluenced by dietary fat level, fat saturation, age and meal pattern due 

in part to high variations within groups. Large values for all dietary 

regimens were between 378-666 dpm x 10^, with group mean values 412-640 

dpm X  1 0 ' .  

Plasma 'H-cholesterol 

Plasma *H-cholesterol was assessed as 'H-digitonin precipitable 

steroids (^H-DPS). Plasma ^H-DPS counts were too low to be regarded with 
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confidence. Counts in some groups were 2 to 3 cpm over background, after 

correction for ^"C-quenching. Consequently, these data will not be dis­

cussed. Since plasma ^H-DPS is an estimate of newly synthesized choles­

terol transported out of the liver (Dupont et al., 1972), the low counts 

obtained with plasma ^H-DPS indicate that the 2 1/2 hours time period used 

for studying cholesterol synthesis from ^H-acetate was too short for 

maximal hepatic cholesterogenesis and cholesterol transport into the 

plasma. 

Hepatic cholesterol concentrations 

Hepatic cholesterol concentrations were expressed as mg cholesterol 

per g of wet tissue (mg/g), and as total mg cholesterol in the whole 

tissue (total mg). In general, SO fed animals had more cholesterol per g 

liver and in the whole liver than did either LF- or BT-fed rats (p<.05. 

Table 10). Increased hepatic cholesterol with polyunsaturated fat feeding 

was observed as early as age 2 months (30 days feeding), and persisted 

until the termination of the study at age 4 months. Hepatic cholesterol 

concentrations of LF- and BT-fed animals were relatively similar, whether 

expressed on a mg per g or total mg basis. Hepatic cholesterol levels 

tended to increase between ages 2-4 months (p<.05). These changes were 

correlated in part with liver weight. Meal feeding did not appear to 

influence hepatic cholesterol concentration (mg/g). However, when values 

for total liver cholesterol content were compared, meal feeding caused 

consistently lower hepatic cholesterol levels than did the ad libitum 

regimen {p<.05). For example, overall means were 36 and 46 mg for MF and 

AL feeding, respectively. 
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Table 10. Plasma, hepatic and small intestine plus contents (SI) choles­
terol concentrations in mg cholesterol per g of wet tissue and 
total mg cholesterol in whole tissue; cholesterol was assessed 
as digitonin precipitable steroids (DPS) 

2 months 3 months 
30 days 60 days 

Serum Liver SI Serum Liver 
Total 
mg/dl mg/g 

Total 
mg 

Total 
mg/g mg 

Total 
mg/dl mg/g 

Total 
mg 

LF-AL 41±2® 2.2+.1 39+2 2.3±.2 21±2 43+3 1.8±.l 26±2 

LF-MF 35±4 2.0+.1 28+2 2.6+.2 19±2 46+3 1.8±.l 18±2 

SO-AL 41 ±2 3.1±.l 66+2 3.3+.2 28+3 52+3 3.6±.3 55±5 

SO-MF 36±2 3.4±.3 44±2 3.1+.2 25+3 48±3 2.8±.3 36+2 

BT-AL 38±2 1.9±.l 40±3 2.2±.l 23±2 52±2 2.3+.3 30±3 

BT-MF 45±4 2.4+.1 43±2 2.0±.l 20±1 50+2 1.9±.2 25±3 

ANOVA 
Liver SI 

Serum mq/q Total mq mq/q Total mg 

Fat level NS p<.05 p<=05 NS NS 

Fat saturation NS p<.05 p<.01 p<.05 p<.05 

Age NS p <. 05 p <. 05 p<.05 NS 

Meal pattern NS NS p<.05 NS NS 

Diet X age NS NS NS NS NS 

Diet X meal pattern NS NS NS NS NS 

Age X meal pattern NS NS NS NS NS 

Diet X age x meal pattern NS NS NS NS NS 

*Mean ± SEM. 
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3 months 4 months 
60 days 90 days 

SI Serum Liver SI 
Total Total Total Total 

mg/g mg mg/dl mg/g mg mg/g mg 

3.3±.2 30±4 48±3 2.9+. 2 40±2 2.8±.3 28+2 

3.1±.2 25±1 49±3 2.0+. 1 22+1 2.9±.2 26±2 

3.6±.2 37±4 51 ±3 4.0+. 4 60±5 4.4±.3 39±3 

3.8±.2 33±4 50±3 4.4±. 4 57±6 4.2±.3 38±3 

3.3±.2 33±3 49±4 w
 

o
 

1+
 

3 51±3 2.9±.3 32±2 

2.8±.2 28±3 48+3 3.2+. 4 48±3 2.8+.2 28±2 
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Stnal 1 intestine cholesterol concentrations 

The concentrations of cholesterol in small intestine plus contents 

were expressed as mg cholesterol per g of wet tissue and total mg choles­

terol in the whole tissue. Intestinal contents contained dietary choles­

terol, though dietary contribution was low (about 0.01 mg/g fat). Since 

food intake was not controlled prior to termination, intestinal contents, 

and thus amounts of dietary cholesterol, may have varied with the amount 

of food ingested. Consequently, small intestine cholesterol concentra­

tions determined in this study were only estimates of actual cholesterol 

content in the small intestinal mucosa (Table 10). 

In general, increasing dietary fat level increased small intestine 

cholesterol level only when safflower oil and not beef tallow was used as 

a source of fat (p<.05). Small intestine cholesterol was not influenced 

by age when calculated as mg cholesterol per whole organ. However, based 

on unit tissue weight, small intestine cholesterol levels increased with 

age (p<.05), and maximal increases occurred between ages 3-4 months. Meal 

pattern, as a variable, did not appear to affect cholesterol levels of 

small intestine based on either concentration or total content. 

Cholesterol synthesis 

Hepatic ^H-cholesterol Hepatic 'H-cholesterol was assessed as ^H 

counts in digitonin precipitable steroids (^H-DPS). Hepatic cholestero-

genesis was elevated when dietary fat level was increased (p<.001). Diet 

SO was as effective as diet BT in enhancing hepatic cholesterogenesis when 

compared to diet LF. Variable mean values for groups LF, SO and BT were 

142, 247 and 243 dpm x 10^, respectively. Hepatic cholesterogenesis with 
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Table 11. Cholesterol synthesis 2 1/2 hours after *H-acetate injection. 
^H-counts in cholesterol from liver and small intestine plus 
contents. Cholesterol was assessed by digitonin precipitation 
method. Counts are expressed in dpm x 10® per organ 

2 months 4 months 6 months 
30 days 60 days 90 days 

Liver 

LF-AL 79+10* 169±23 167±24 

MF 90+10 74±19 276+45 

SO-AL 157±25 322±30 332+65 

MF 84±16 267±30 318+39 

BT-AL 132±17 352+20 304+58 

MF 67±10 240±39 358±91 

Small intestine + contents 

LF-AL 29±3 45±5 53±3 

MF 18±2 25±1 35±3 

SO-AL 15±3 21 ±2 32±5 

MF 13±2 24±3 30+4 

BT-AL 39±5 62±6 85±5 

MF 28+3 43±6 56±6 

*Mean ± SEM. 
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Table 12. Cholesterol synthesis 2 1/2 hours after ^H-acetate injection. 
^H-counts in cholesterol from liver and small intestine plus 
contents. Cholesterol was assessed by digitonin precipitation 
method. Counts are expressed in dpm x 10^ per organ. Variable 
means, main effects and interactions 

Main effects 

Liver li 

Diet p<.001 p<.001 

LF 142 34 

SO 247 22 

BT 243 52 

Fat level p<.001 NS 

LF 142 34 

HF (SO + BT) 245 37 

Fat saturation NS p<.001 

SO 247 22 

BT 243 52 

DaZ Age p<.001 p<.001 

30 2 102 24 

60 3 237 37 

90 4 394 49 

Meal pattern NS p<. 001 

AL 224 42 

MF 197 30 
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Interactions 

Diet X age 

Diet X meal pattern 

Age X meal pattern 

AL 

MF 

Diet X age x meal pattern 

Liver SI 

NS NS 

2 3 4 2 3 4 

LF 84 121 221 LF 24 35 44 

SO 121 294 356 SO 14 23 31 

BT 100 296 332 BT 33 53 69 

NS p<.001 

AL MF AL MF 

LF 138 147 LF 43 26 

SO 271 223 SO 23 22 

BT 262 222 BT 62 41 

p<.01 NS 

2 3 4 2 3 4 

123 281 268 AL 28 43 57 

81 194 318 MF 20 31 39 

NS NS 
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Figure 6. Cholesterol synthesis from ^H-acetate injected 2 1/2 hours prior to termination. 
Cholesterol was assessed by digitonin precipitation method. Top figure shows total 
^H-counts in digitonin precipitable steroids (DPS) from liver. Bottom figure shows 
total ^H-counts in DPS from small intestine plus contents. Counts are expressed 
DPM X 10^ per organ. 
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so feeding was not different from that with BT (247 vs. 243 dpm x 10®). 

Hepatic cholesterogenesis increased with aging (p<.001). The increase be­

tween ages 2-4 months was almost linear. For examples, the variable mean 

values for ages 2, 3 and 4 months were 102, 237 and 493 DPM x 10®. Hepatic 

cholesterogenesis was not affected by meal feeding. However, at age 3 

months, the difference between meal patterns was about 2 times greater 

than differences between patterns for ages 2 or 4 months (age x pattern 

interaction. Table 11). The big difference between patterns at age 3 

months was due in part to unusually low hepatic cholesterogenesis rates 

in group LF-MF(Figure 6). 

Small intestine ^H-cholesterol Tritium labeled cholesterol in 

small intestine plus contents was assessed on the basis of counts in 

digitonin precipitable steroids (^H-DPS). Unlike cholesterol synthesis 

from 'H-acetate in liver, that in small intestine was higher with LF-

feeding than with SO feeding (p<.01), but was lower than with BT feeding 

(p<.001). It follows that cholesterogenesis in the small intestine was 

affected by fat source. Tritium counts in intestinal DPS of BT fed rats 

exceeded those with the SO treatment by more than 100% (p<.001). Group 

mean values for groups LF, SO and BT were 34, 22 and 52 dpm x 10*, re­

spectively. Safflower oil feeding affected intestinal cholesterogenesis 

as early as 30 days on the diet. Intestinal cholesterogenesis was ele­

vated with aging (p<.001). Meal feeding decreased intestinal cholestero­

genesis (p<.0Ql). Differences in cholesterogenesis between patterns were 

most apparent with diets LF and BT. There was no difference between 

patterns with diet SO. The magnitude of cholesterogenesis decrease with 
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meal feeding in groups LF and BT was approximately 1 1/2 times that in 

group SO (diet x meal pattern interaction, Table 12, Figure 6). 

i*C-cholesterol retention Carbon-14 cholesterol in liver and 

small intestine was measured by counting in digitonin precipi table 

steroids (^^C-DPS). 

Hepatic ^^C-cholesterol Hepatic ^^C-cholesterol increased when 

dietary fat level was elevated regardless of fat source (p<.02. Figure 7). 

Furthermore, ^^C-cholesterol recovered from SO fed groups was not statis­

tically different from that of groups receiving BT. Group mean values 

were 428, 585 and 552 dpm x 10® for groups LF, SO and BT, respectively. 

The increase in hepatic i*C-cholesterol with age (p<.001) was almost 

linear. Highest values occurred at age 4 months with every dietary treat­

ment. Variable mean values at ages 2, 3 and 4 months were 400, 537 and 

629 dpm X 10®, respectively. Hepatic ^"^C-cholesterol retention decreased 

with meal feeding in contrast to ad libitum feeding (p<.001) with variable 

mean values of 593 and 451 dpm x 10® for AL- and MF-treatments, respec­

tively (Tables 13-14). 

Small intestine plus contents '''C-cholesterol At all age periods 

studied, retention of ^''C-cholesterol in the small intestine with diet LF 

was consistently lower than retention with SO (p<.001) and BT (p<.01). 

V a r i a b l e  m e a n  v a l u e s  f o r  g r o u p s  L F ,  S O  a n d  B T  w e r e  2 9 ,  4 7  a n d  3 4  d p m  x l O \  

respectively. While fat saturation had no influence on hepatic ^^C-

cholesterol, counts in the small intestine were elevated with SO compared 

to BT feeding (p<.001, 47 vs. 34 dpm x 10®, respectively). Again, this 

increase with SO feeding compared to BT feeding was observed throughout 
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Table 13. Cholesterol retention, ^**0-cholesterol in liver and small in­
testine plus contents. ^"C-cholesterol was assessed as ^^C-
digitonin precipitable steroids (i^C-DPS). Counts are expressed 
as dpm X 10' per organ 

2 months 3 months 4 months 
30 days 60 days 90 days 

Liver 

LF-AL 464±41® 478±115 588+86 

MF 201±63 413±72 422+118 

SO-AL 353±66 793±87 630+154 

MF 422+62 580±66 689±64 

BT-AL 398±71 607±35 1021±124 

MF 436±65 347+51 424+98 

Small intestine + content 

LF-AL. 24±3 42±4 51+6 

MF 15±2 18+3 26±4 

SO-AL 31 ±4 51+3 61 ±5 

MF 29±3 50±3 57±5 

BT-AL 29±2 48±4 55±8 

MF 17+2 41 ±5 47±5 

®Mean ± SEM. 
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Table 14. Cholesterol retention, total ^^C-DPS in liver and SI; variable 
means, main effects and interactions 

Main effects 

Liver iL 

Diet p<.02 p<.001 

LF 428 29 

SO 585 47 

BT 552 34 

Fat level p<.001 p<.001 

LF 428 29 

HF (SO + BT) 569 41 

Fat saturation NS p<.001 

SO 585 47 

BT 552 34 

Day Age p<. 001 p<.001 

30 2 400 24 

60 3 537 42 

90 4 629 49 

Meal pattern p<.001 p<.001 

AL 593 44 

MF 451 33 
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Interactions 

Liver 11 

Diet X age NS NS 

2 3 4 2 3 4 

LF 333 446 505 LF 19 30 38 

SO 410 686 659 SO 30 51 59 

BT 457 477 723 BT 23 44 51 

Diet X meal pattern p<.l p<.01 

AL MF AL MF 

LF 510 346 LF 40 19 

SO 592 579 SO 48 45 

BT 676 429 BT 44 40 

Age X meal pattern p<.01 NS 

2 3 4 2 3 4 

AL 405 627 746 AL 45 47 56 

MF 395 447 512 MF 21 36 43 

Diet X age x meal pattern p<.05 NS 
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Figure 7. ^^C-cholesterol retention in liver and small intestine. Cholesterol was assessed by 
digitonin precipitation method. Top figure shows total ^^C-counts in digitonin pre-
cipitable steroids (DPS) from liver. Bottom figure shows ^'•C-counts in DPS from small 
intestine plus contents. Counts are expressed as DPM x 10' per organ. 
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the experiment. As in liver, ^"C-cholesterol retention in the small in­

testine increased with age (p<.001). Corresponding values increased by 

approximately 20% between ages 2 and 4 months in all dietary treatment 

groups. With meal pattern as a variable, small intestine ^^C-cholesterol 

retention increased with ad libitum feeding. Values were 44 and 33 dpm x 

10' for AL and MF, respectively (p<.001). On a unit tissue weight basis, 

^**0-cholesterol retention was also increased with AL over MF feeding 

(p<.05). Differences in ^^C-cholesterol between meal patterns in LF 

groups were two times those of either SO- or BT-fed rats (p<.01). The big­

gest difference between meal patterns occurred at age 2 months (Table 13). 

Cholesterol degradation and excretion In analyzing ^"^C derived 

from 4-i^C-cholesterol administered 6 days prior to termination, the 

assumption was made that none of the ^"*0 could be lost from the steroid 

ring compound during degradation to bile acids(Tablesl5-16, Figure 8). 

Hepatic ^'*C-acid steroids Mean hepatic ^"^C-counts in the acidic 

steroid fraction of group LF were lower than those of group SO (p<.001), 

but identical to those of BT fed rats. Variable mean values for these 

groups were 2.5, 3.4 and 2.4 dpm x 10^ for LF, SO and BT, respectively. 

This implied that a high degree of polyunsaturation stimulated conversion 

of cholesterol to bile acids. The data indicated also that a low fat, 

high carbohydrate diet led to similar rates of acid steroid formation. 

These observations held true for each age period. Hepatic ^"^C-acid 

steroid levels increased with age (p<.001). Decreased acid steroid con­

tent was also observed with meal feeding (p<.001). A decrease in counts 

was attributed to decreased liver size of meal fed animals only, since 

counts on a unit tissue weight basis between ad libitum and meal feeding 
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Table 15. Cholesterol degradation and excretion, ^"^C-counts in acid 
steroids from liver, small intestine plus contents and feces. 
Counts are expressed in dpm x 10® per organ 

Liver 

LF-AL 2.9±.4® 2.8±.4 3.4±.4 

MF 1.9±.3 2.9±.5 1.3±.2 

SO-AL 3.2±.4 5.2±.5 2.9±.6 

MF 2.9±.4 3.8±.4 2.2±.3 

BT-AL 2.21.3 3.5±.6 2.0±.3 

MF 2.6±.5 2.5±.5 1.6±.2 

Small intestine + contents 

LF-AL 9±2 8±1 16±2 

MF 8±1 8±1 13+3 

SO-AL 12+1 22±3 22±3 

MF 10±1 25+5 25±2 

BT-AL 14±2 10+1 17±1 

MF 9±1 9+1 13±1 

Fecal + cecal contents 

LF-AL 30+6 42+5 52+3 

MF 19±6 20±2 24±5 

SO-AL 26+4 42±5 43±5 

MF 34+3 45±5 24±7 

BT-AL 29±3 40+6 39+9 

MF 18±2 24+2 22±4 

^Mean ± SEM. 
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Table 16. Cholesterol degradation and excretion, ^"^C counts in acid 
steroids from liver, small intestine plus contents and feces. 
Counts are expressed in dpm x lO^per organ. Variable means, 
main effects and interactions 

Main effects 

Liver Feces 

Diet p<.01 p<.001 NS 

LF 2.5 10 31 

SO 3.4 19 36 

BT 2.4 12 29 

Fat level NS p<.001(4.138) NS 

LF 2.5 10 31 

HF (SO + BT) 2.9 16 33 

Fat saturation p<.001 p<.001 p<.01 

SO 3.4 19 36 

BT 2.4 12 29 

Day. Age p<.001 p<.001 p<.01 

30 2 2.6 10 26 

60 3 3.5 14 35 

90 4 2.2 17 34 

Meal pattern p<.001 NS p<.001 

AL 3.1 14 38 

MF 2.4 13 26 
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Liver 

Diet X age NS 

2 3 4 

LF 2.3 2.8 2.4 

SO 3.1 4.5 2.6 

BT 2.4 3.0 1.8 

Diet X meal pattern 

NS 

AL MF 

LF 3.0 2.0 

SO 3.8 3.0 

BT 2.6 2.3 

Age X meal pattern 

NS 

2 3 4 

AL 2.8 2.8 3.1 

MF 3.8 2.5 1.7 

Day X age x meal pattern 

NS 

Interactions 

SI Feces 

p<.02 NS 

2 3 4 2 3 4 

LF 9 8 14 LF 25 31 38 

SO 11 24 23 SO 30 43 34 

BT 11 10 15 BT 24 32 31 

NS 

AL MF 

p<.05 

AL MF 

LF 11 10 LF 41 21 

SO 18 20 SO 37 34 

BT 14 10 BT 36 21 

NS p<.05 

2 3 4 2 3 4 

AL 12 18 14 AL 28 45 30 

MF 14 9 17 MF 41 24 24 

NS NS 
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Figure 8. Cholesterol degradation and excretion. Total ^^C-counts in acid steroids from liver, 
small intestine plus contents, and feces. Counts are expressed as dpm x 10^ per organ. 
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were not different (0.23 vs 0.20 dpm x 10^,Tables 15-16, Figure 8). 

Small intestine acid steroids As in the case of liver, small 

intestine acid steroid content was increased with SO feeding compared 

to LF or BT feedings (p<.001. Tables 15-16, Figure 8). In addition, i"*c 

acid steroid excretion in group LF was relatively similar to group BT. 

Variable mean values for groups LF, SO and BT were 10, 19 and 12 dpm x 

IQS, respectively. Acidic steroid excretion, in general, increased be­

tween the ages of 2-4 months (p<.001). Variable mean values for these 

three periods were 10, 14, and 17 dpm x 10^. Maximal increase with group 

SO was attained at age 3 months. Finally, ^^C-acidic steroid content in 

the intestine was not influenced by variations in meal pattern based on 

total i^C-counts in the whole tissue (14 vs. 13 dpm x 10^ for AL vs. MF) 

or counts per g of wet tissue (1.5 vs. 1.4 dpm x 10^ for AL vs. MF). 

Fecal i^C-acid steroids Fecal ^"*0 acid steroids included acid 

steroids from large intestinal contents and feces. Fecal i*C-acid 

steroid excretion was similar with LF and BT diets. Though the variable 

mean with SO exceeded those for LF and BT by 13 and 24%, respectively. 

only the SD-BT comparison was statistically significant (p<.01). In­

creased fecal acid steroid excretion with SO over BT was observed in all 

age groups studied. In general, fecal acid steroid excretion increased with 

age (p<.01), though the increase was nonlinear with plateaus at ages 3-4 

months. With meal feeding, fecal acid steroid excretion decreased in meal 

fed rats (26 dpm x 10^) in contrast to ad libitum fed animals (38 dpm 

x IQ:, p<.01 , Tables 15-16, Figure 8). 

Fecal i^C-neutral steroids Due to technical difficulties with the 

scintillation counter, counting of fecal ^^C-neutral steroids was delayed 
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for 6 weeks. Consequently, phase separation and precipitation occurred in 

the scintillation cocktail, giving rise to erratic counts. Data for fecal 

i*C-neutral steroids are therefore not presented. 

Plasma hormone 

Plasma thyroxine levels Plasma thyroxine levels were used to 

estimate thyroid status. Thyroxine levels were assessed only in the 4-

months old animals. Three measurements were used in this study to estimate 

thyroid status: 1) T3 (triiodothyronine) levels, 2) T4 (tetraiodo-

thyronine) levels, 3) T4/T3. 

Plasma T3 levels were not influenced by dietary fat level and meal 

pattern, though values for SO-fed groups tended to be higher than those 

for BT groups (p>.05). Variable group mean values were 69, 75 and 66 

thyopac units for groups LF, SO and BT, respectively (Table 18). 

Plasma T4 levels were not influenced by any of the variables used. 

Range values were narrow, between 3.5-4.9 ug/dl plasma, and group mean 

values were between 3.8-4.9 yg/dl plasma. 

Plasma T4/T3 value was also not influenced statistically by the 

variables used, attributable to both high standard deviations (about 

20-50%) and small group differences. Range values for T4/T3 ratio were 

between 5-7, while group mean values were fairly similar among the three 

dietary groups, for example, 5.5, 6.5 and 6 for LF, SO and BT, respective-
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Table 17. Serum thyroxine levels 

T3® T4^ 

4 months 
90 days 

T4/T3^ 

LF-AL 67±4^ 4.3±.4 6±1 

MF 70±5 3.6±.4 5+1 

SO-AL 78±3 4.8±.4 6±1 

MF 72+4 4.9±.9 7±2 

BT-AL 65±3 4.7+.9 7+2 

MF 67±3 3.5±.3 5±2 

T3 li T4/T3 

Fat level NS NS NS 

Fat saturation p<.05 NS NS 

Meal pattern NS NS NS 

^Triiodothyroxine in thyopac units. 

^Tetraiodothyroxine in yg/dl plasma (thyroxine free acid form). 

^Free thyopac index, estimate of thyroxine level in serum. 

^Mean ± SEM. 
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Discussion 

In the present study an experimental model was used suitable for 

monitoring acute alterations in cholesterol metabolism during maturation. 

Thirty day old male rats were challenged with semi-purified diets either 

low or high in fat and varying in degree of saturation of the fat source 

(SO or BT). These animals were killed after 30, 60 or 90 days on their 

respective regimens. The time periods corresponded to chronological ages 

of 2, 3 and 4 months. Rats were trained to eat their daily caloric intake 

in 3- or 24-hoursout of a 24-hour period. Room lighting schedule was re­

versed, with a dark photo period between 9 am to 6 pm. Under these condi­

tions maximal peak activity of HMG-CoA reductase, the rate limiting step 

in cholesterogenesis should have been reached at 2 pm for ad libitum fed 

rats, and 6 pm for meal-fed rats (Edwards et al., 1972). Recent reports 

by McNamara et al. (1972) indicated that the amplitude and phase changes 

in HMG-CoA reductase activity associated with the post-weaning period 

would have declined and stabilized to those of adult levels by day 30. 

Thus, it is assumed that data measured in this study were uncomplicated by 

post-weaning hormonal-induced reductase activity, rather that they were 

induced by the variables used in this experiment. 

The animal model used here, however, had some limitations since it 

did not consider fully all differences in cholesterol metabolism, which 

may have resulted from the variables tested. 

First, cholesterogenesis in meal fed groups might have been under­

estimated, since it may not have been determined at peak activity which 
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occurs around 6 pm. In the present study, rats, regardless of meal 

pattern, were killed between 12:30-2:30 pm, the time for peak cholestero-

genesis in ad libitum feeding. 

Secondly, ad libitum fed rats tended to consume most of their food 

during the first 8 hours of the dark period. Similar observations were 

made by Carlson (1975) with adult rats. This voluntary meal pattern could 

have affected activities of enzymes which follow diurnal rhythms, such as 

HMG-CoA reductase and 7-a-hydroxylase, the latter of which controls the 

first step in cholesterol degradation to bile acids. 

Finally, assessments of rates of cholesterogenesis 2 1/2 hours after 

^H-acetate injection might not have measured maximal rates of cholestero­

genesis. According to several investigators (Goldfarb and Pitot, 1972; 

Bortz, 1973), maximal rates of cholesterogenesis occurred 10-12 hours 

after acetate injection. 

In spite of these limitations, certain changes were apparent in 

cholesterol metabolism resulting from the variables used in this study. 

Growth Rates 

Data on body weights, food intakes and food efficiencies with the 

three diets (LF, SO and BT) confirmed those collected previously in our 

laboratory (Reeves, 1971; Carlson, 1975). In general, beef tallow fed 

animals appeared to eat more and gain more weight than did rats raised on 

safflower-oil. However, food efficiencies between the two fat types were 

not different. 
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Certain tissue weights were sensitive to changes in dietary fat and/or 

to aging, for example, liver, epididymal fat pads, stomach (with contents 

removed), kidneys. The spleen, however, appeared to reach maximal weight 

by age 2 months, and did not respond to any of the variables used. 

Plasma Cholesterol and Triglyceride Levels 

Plasma cholesterol concentration did not alter with the dietary 

variables used in young, 2-4 months old rats. Failure to demonstrate 

differences with variations in dietary fat level and in fat saturation 

may be related to low plasma cholesterol values characteristic of young 

rats. Studies with humans had indicated that serum cholesterol concentra­

tions of subjects with low cholesterol concentrations (around 150-180 mg/ 

dl) did not respond to changes in dietary fat as dramatically as did those 

of patients with hypercholesteremia (Grundy et al., 1969). Lack of re­

sponse of humans and animals with low serum cholesterol levels to changes 

in dietary fat may be due to more efficient cholesterol degradative and 

excretory mechanisms, or to faster cholesterol exchange between serum and 

the slowly exchanging pools such as muscle, adrenals, heart and others. 

Plasma cholesterol concentrations of animals over the three age 

periods (2-4 months) averaged between 40-50 mg/dl. Dupont et al. (1972) 

reported a range of 50-80 mg/dl for Carworth-CFE rats between the ages of 

3-6 months. 

Plasma cholesterol concentrations tended to increase between ages 2-4 

months (about 23%). Dupont et al. (1972, 1975) reported increases in serum 

cholesterol concentrations with age with the greatest increase after 9 
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months of age. Failure to bring out significant increases with age in our 

study may be related to the young age groups studied here. It could also 

be that young rats are more resistant to dietary variables compared to 

older rats. 

Plasma cholesterol concentrations of rats fed a 3 hour meal were not 

different from rats fed continuously. This finding confirms that observed 

in humans (Wahdwa et al., 1973) and that in rats (Okey et al., 1960). This 

finding contradicts that reported with adult rats (Reeves and Arnrich, 

1974; Carlson, 1975) and with monkeys (Gopalan et al., 1962). These 

authors found increased serum cholesterol concentrations with meal 

feeding, regardless of dietary types. Failure to demonstrate increased 

cholesterol concentration with meal feeding in this study could be re­

lated in part to the feeding habits of ad libitum fed animals, which con­

sumed most of their food in 6-0 hours during the dark period. Conse­

quently ad libitum fed controls may have responded physiologically like 

meal fed rats. Meal fed rats consumed in a 3 hour period about 75-88% 

of the food calories of ad libitum controls. In addition it is likely 

that young rats adapt readily to meal feeding, and that therefore the 

physiological response to differences in feeding pattern is small. 

Increase in serum cholesterol concentration is transitory, and may 

disappear with prolonged feeding (Leveille and Hanson, 1965). Since 

plasma cholesterol concentrations at the start of the experiment were not 

measured, and since the earliest measurement came 30 days after initiation 

of the meal feeding regimen, the possibility exists that increased plasma 

cholesterol concentrations could have been obliterated by 30 days of 

feeding. 
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Data for plasma ^**0-cholesterol retention in the plasma pool after 6 

days showed little difference in total counts between diets, meal patterns 

and age. These radiochemical data corresponded to chemical data on 

cholesterol concentration. 

Plasma triglyceride levels averaged between 230-250 mg/dl in variable 

mean values for the three diet regimens. Significance was not obtained 

due to small group differences and large standard error of the means. 

Data from plasma triglyceride levels support data from plasma cholesterol 

concentrations, both of which showed neither increase nor decrease with 

variations in dietary fat level, saturation and meal pattern. The rela­

tionship between plasma triglyceride and cholesterol levels is not well 

documented, though alterations in circulating triglyceride levels have 

been implicated in subsequent changes in plasma cholesterol levels 

(Goh and Heimberg, 1973). 

Plasma Thyroxine Level 

Thyroid hormone affects hepatic cholesterogenesis and HMG-CoA re­

ductase activity in rats and in humans {Fletcher, 1958; Gries et al., 

1962). Hyperthyroidism may decrease plasma cholesterol levels, while 

hypothyroidism is often accompanied by hypercholesterolemia. It has been 

speculated that changes in plasma cholesterol concentrations and hepatic 

synthesis are results of changes in oxidative rates which overcompensate 

(hyperthyroidism) or undercompensate (hypothyroidism) for alteration in 

cholesterol synthesis. More specifically tri-iodothyramine has stimulated 

hepatic HMG-Co reductase in hypothyroid rats. In the present study, 

plasma thyroxine level, as estimated from either Tg or T^, was not 
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different for most dietary treatment groups when dietary fat level or fat 

saturation was varied. Though the plasma level was increased with 

safflower oil feeding (Table 18), this increase was not associated with 

changes in hepatic cholesterogenesis or plasma cholesterol. Plasma T^/Tg 

was not influenced by any of the variables used. Compared to Tg and T^ 

concentrations these ratios, purportedly, are better controlled parameters 

of thyroid status since they are less influenced by stress, drugs, and 

infections. 

Cholesterol Synthesis 

Effects of high fat diets on cholesterol synthesis appear to depend 

on the organ under consideration. Hepatic cholesterogenesis was enhanced 

with fat feeding, regardless of fat source. However, small intestinal 

cholesterogenesis was decreased with safflower oil and increased with 

beef tallow compared to the LF diet. Increased hepatic cholestero­

genesis with fat feeding confirmed the findings of others (Linazasoro 

et al,, 1958; Wood and Migocovsky, 1958). Under conditions of con­

trolled feeding, other investigations have also reported elevated 

hepatic cholesterogenesis with fat feeding in young rats (Bortz, 1967; 

Goldfarb and Pitot, 1972) and in adult rats (Carlson, 1975). Increased 

rates of hepatic cholesterogenesis with high fat diets may be related to a 

concomitant Inhibition of fatty acid synthesis which could result in 

elevated cellular levels of acetyl CoA for cholesterol synthesis (Hill 

et al., 1960; Bortz, 1967; Goldfarb and Pitot, 1972). More specifically, 

high fat diets caused accumulations of intrahepatic levels of fatty acetyl 

CoA , which inhibits acetyl CoA carboxylase and subsequently lipogenesis 
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(Bortz, 1963). Increased rates of hepatic cholesterogenesis may also be 

related to elevated cellular levels of NADPH. In adipose tissue of rats, 

high fat diets caused elevated production NADPH (Zaragoza, 1974). Since 

maximal HMG-CoA reductase activity occurred after preincubation with NADPH 

(Tormanen et al., 1975), it is conceivable that elevated hepatic choles­

terogenesis with fat feeding can be attributed to increased HMG-CoA re­

ductase activity. Supporting work comes from Goldfarb and Pitot (1972) 

who showed increased HMG-CoA reductase synthesis with fat feeding. 

Changes in cholesterol biosynthesis in the small intestine with fat 

feeding depended on fat type. Safflower oil induced a decrease in choles­

terogenesis in contrast to beef tallow. This finding confirms that of 

Carlson (1975) with adult rats. Reduced rates of cholesterogenesis in the 

small intestine with safflower oil feeding may be due to increased cellu­

lar cholesterol content, which causes feedback inhibition of HMG-CoA re­

ductase activity (Shefer et al., 1973). 

A number of publications indicated increased hepatic cholesterol 

synthesis with dietary intake of polyunsaturated fatty acids (Goldfarb 

and Pitot, 1972; Dupont et al., 1972). The present study with young rats 

failed to demonstrate differences due to degree of fat saturation. How­

ever, our results corroborate with those of Dupont et al. (1975) and 

Carlson (1975) who worked with adult rats and with dietary fats identical 

to those used in the present work. The failure to find a stimulation of 

cholesterogenesis with polyunsaturated fats may be related to the time 

lapse after tritiated acetate injection (2 1/2 hours). This period may 

not have been sufficiently long to detect differences due to fat types. 

Hepatic cholesterol synthesis, measured 10-12 hours after labeled acetate 
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administration indicated enhanced rates of synthesis, as well as maximal 

activity of HMG-CoA reductase (Bortz and Steele, 1973). Though 2 1/2 hours 

may have been too short to see effects on cholesterol synthetic rates due 

to diet, this time period was selected in favor of the maximum at 10 

hours to avoid extensive exchange between tissues of the newly synthesized 

cholesterol. 

Data from the present study indicated increased rates of hepatic and 

intestinal cholesterogenesis in rats matured between ages 2-4 months. 

Dupont et al. (1975) have reported increased tritiated alanine incorpora­

tion into cholesterol in liver in rats aged 9-12 months. Increased rates 

of cholesterogenesis with age in the present study may be attributable 

to increased organ weights over the three age periods. 

In the present study meal pattern did not affect hepatic cholestero­

genesis while small intestine cholesterogenesis decreased with meal feed­

ing. Failure to demonstrate differences in hepatic cholesterogenesis may 

be due to the limitation of the experimental design. According to the 

literature, maximal rates of hepatic cholesterogenesis would have occurred 

later for meal fed compared to ad libitum fed groups. In contrast, rates 

of small intestinal cholesterol biosynthesis decreased with meal feeding, 

whether expressed on a unit tissue or whole tissue weight basis. Evidence 

is available that rates of cholesterol synthesis were unaffected with meal 

feeding in adult rats. No other reports have been found on this subject. 
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Cholesterol Degradation and Excretion 

The consistent increase in bile acid contents of liver, small in­

testine and feces with safflower oil feeding was the most striking finding 

of cholesterol degradation to bile acids and subsequent bile acid excre­

tion. At all three sites, the substitution of beef tallow as fat source 

produced almost identical levels of bile acids as did the low fat diet. 

Increased bile acid production and subsequent excretion were also shown by 

others in rats using either corn or safflower oil (Gordon et al., 1964; 

McGovern and Quackenbush, 1973a). Previous studies in our laboratory with 

adult rats indicated similar elevations of bile acid formation and excre­

tion. The evidence was indirect, based on calculations involving bile 

acid specific activity (Carlson, 1975). 

The mechanism whereby polyunsaturated fatty acids increase bile acid 

formation and excretion is only speculative at this present time. In­

creased cholesterol degradation to bile acids could be due to shortened 

half-life of bile acids with fat unsaturation (McGovern and Quackenbush, 

1973c; Lindstedt et al., 1965; Moore et al., 1968). McGovern and 

Quackenbush (1973a)found that substitution of safflower oil for beef 

tallow increased cholesterol conversion to bile acids by 13.5% while the 

secretion of the acid steroid label from the liver was increased by 8.6%. 

Other factors which could influence bile acid production are the 

plant sterols, such as 6-sitosterol, present in safflower oil. Beta-

si tosterol enhanced bile acid production by competing with cholesterol for 

absorption (Spritz et al., 1965). Thus negative feedback by cholesterol 

on hepatic cholesterogenesis would be removed. However, this factor may 
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be of minor importance in this study since exogenous cholesterol was not 

present, so that only reabsorption of endogenous cholesterol could have 

been affected. 

The present study indicated increased bile acid formation and excre­

tion with increase in age from 2-4 months. Meal-feeding decreased bile 

acid synthesis in liver, and decreased bile acid excretion in feces. 

These results contradict those of Carlson (1975) with adult rats, who 

failed to find a meal feeding effect. 

Cholesterol Distribution 

Data from these studies indicate that cholesterol content in the 

plasma-hepatic-small intestinal pool was influenced by level of dietary 

fat, though plasma cholesterol concentrations did not decrease with poly­

unsaturated fat feeding. Cholesterol content, as determined chemically, 

was elevated with safflower oil feeding in liver and small intestine. 

Beef-tallow feeding did not appear to invoke differences in cholesterol 

content in these tissues when compared to low fat feeding. In liver, 

radiochemical data on the distribution of ^"C-cholesterol label six days 

after injection did not support the chemical data. Measurements of '^C-

cholesterol in liver were similar with the two fats. This discrepancy 

between chemical and radiochemical interpretation could be attributable to 

relatively large individual variations with radiochemical methodology. In 

small intestine, measurements from cholesterol label verified increased 

cholesterol accumulation with high fat feeding particularly with safflower 

oil. Increased cholesterol accumulation in liver and small intestine with 

polyunsaturated fat intake was also reported in rats (Bloomfield, 1964). 
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In young rats between the ages of 2-4 months, cholesterol accumula­

tion in the liver and small intestine increased. This observation was 

verified both chemically and radiochemically. Dupont et al. (1972) also 

reported increases in cholesterol content and ^^C-cholesterol label in the 

liver of young rats between 3-18 months of age. Accumulation of tissue 

cholesterol correlated to increases in organ and body size with aging. 

Meal feeding decreased i^C-cholesterol content in liver and small 

intestine. However, cholesterol contents, determined chemically, were not 

different between meal patterns in these sites. Similar findings were 

reported by Carlson (1975) with adult rats. In young rats, however, the 

inverse correlation between hepatic and serum cholesterol levels was not 

observed. This finding supports the study of Anderson and Fausch (1964) 

who showed decreased hepatic cholesterol concentrations, though plasma 

concentrations with ad libitum and meal fed swine were similar. This 

study, however, contradicts those of Reeves (1971), Carlson (1975) and 

McGovern and Quackenbush (1973a,b,c) who demonstrated reciprocal rela­

tionships between plasma and hepatic cholesterol levels. 

Subjective Observation 

Increased susceptibility of safflower oil fed rats to respiratory 

infection observed in this study confirms observations of Dupont et al. 

(1975) who reported high frequencies of chronic respiratory problems and 

subsequent high mortality in older rats (>7 months). These animals had 

been maintained from young on diets containing high levels of safflower 

oil. Other groups fed beef tallow or a mixed fat were less affected by 

respiratory problems. The investigators, however, did not report the 
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occurrence of skin and eye infections. The deleterious effects of saf-

flower oil feeding may be related to excessive intercellular accumulation 

of linoleate derived from safflower oil, which contains approximately 79% 

linoleic acid. Linoleic acid is a precursor of homo-gamma-1inoleate and 

arachidonic acid which are precursors of prostaglandins (PG). Injections 

of arachidonic acid into rabbits resulted in sudden death due to platelet 

aggregation mediated through certain prostaglandins (Silver, 1974). 

Little information is available relating safflower oil feeding and 

tissue fragility. Increased intestinal and cardiac fragility could be 

related to alterations in mitochondrial membrane structure. Mitochondrial 

membranes of rats fed high levels of safflower oil or corn oil contained 

85 or 53%, respectively, more unsaturated fatty acids than those of beef 

tallow fed rats. In addition, the activities of several membrane bound 

enzymes were related to the physical characteristics of the membranes. 

Cytochrome C oxidase, ATP phospholipase, phospholipase A and fatty acid 

oxidase activities were elevated with PUFA feeding, while succinate de­

hydrogenase activity was decreased (Elson and Shrago, 1975). Presently, 

the overall relations of high polyunsaturated fat intakes to increased 

susceptibility to skin, eye and respiratory infections, increased mortali­

ties, tissue fragilities, membrane alterations are not well understood. 

To explore the cause of cardiac fragility observed in this study, two 

subsequent experiments (Experiment 2 and 3) were designed to study func­

tional and gross morphological changes related to high levels and pro­

longed feeding of safflower oil. 
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SECTION II. CARDIAC STRESS-STRAIN RESPONSE AND MORPHOLOGY 

Review of Literature 

Definitions 

The literature on cardiac mechanics contains several inconsistencies 

in terminologies employed by investigators. It is therefore appropriate 

to define the terms which will be related directly or indirectly to this 

study. 

A stress-strain (SS) curve measures the extension of a material in 

the presence of a force. As the material stretches, the length and volume 

become deformed. 

Stress is defined by Vidik (1973) as the force per unit cross-sec­

tional area of the material. It measures basically the intensity of 

forces. The units commonly employed are g/mm^, g/cnf, dynes/cm^, etc. 

Strain is a dimensionless quantity and is produced by the application 

of a stress. It indicates the change from the original or unstressed to 

the final stressed dimension. Mirsky and Parmley (1973) defined 

Lagrangian strain as (l-lo)/lo where lo is the length at zero stress and 

1 is the instantaneous length. Since zero-state lengths are technically 

difficult to assess, lo is often replaced by initial length or the end 

diastolic length. Natural strain is defined as log^ (l/lo) and is a term 

more applicable to strain for biological materials. In contrast to the 

Lagrangian strain, this definition does not assume that the cross-sec­

tional dimensions remain unaltered and that strains are uniform along the 

length of the fiber. 
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Distensibility is normally employed in pressure-volume change 

studies of the cardiac chambers. It is the change in volume V relative 

to an alteration in pressure P and is expressed as dV/dP. The term is 

used interchangeably with compliance. 

Specific compliance is the change in volume per unit volume relative 

to a pressure change, i.e., dV/VdP. The inverse, VdP/dV, is referred to 

as volume elasticity and has the dimensions of stress. 

Young's modulus describes the mechanical characteristic of an elastic 

material which is compressed or stretched. A material that obeys Hooke's 

law has a stress-strain relationship that is linear. Young's modulus, E, 

is thus expressed as o = Ee, where a and e are the stress and strain, 

respectively. Most biological materials deviate from this linear rela­

tionship. They generally follow a curvilinear path which is usually 

exponential in form. In this instance. Young's modulus is replaced by 

the term tangent modulus. Young's modulus is usually expressed as 

dynes/cm^. 

Tangent modulus or elastic stiffness according to Vidik (1973) and 

Mirsky and Parmiey (1973) is the instantaneous slope at any point of the 

SS curve. If the SS relationship is exponential, the elastic stiffness 

(dcr/de) vs. stress relationship is linear (Figure 9). The slope k of this 

line is termed the elastic stiffness constant with C as the intercept of 

the y-axis. If the material obeys Hooke's law, the elastic stiffness is 

constant and is independent of the stress level. 
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Figure 9. Stress-strain and elastic stiffness (tangent modulus) vs. 
stress relationships: A = a-e relationship for a Hookean and 

non-Hookean (biological tissues) material; B = vs. a rela­

tionship; for non-Hookean material this relationship is linear 
with k as the slope and C the y intercept; for Hookean material 
the relationship is a constant described by the Young's 
modulus, E (Mirsky and Parmley, 1973). 

Stress-strain equation 

A mathematical description of the stress-strain history law of tis­

sues is usually required before theoretical mechanisms can be understood. 

Unfortunately at the present time, there is no satisfactory constitutive 

equation derived for any biological material (Fung, 1967). Extensive two-

and three-dimensional testing program is not feasible on a viable specimen 

without damaging its integrity. Hence most studies are limited to a one-

dimensional stress field at a time. This is true of experiments with 

papillary muscle, intact and perfused heart. A quasi-linear stress-

strain-history relationship for soft tissues was developed by Fung 

(1967) for rabbit mysentery. In biological systems, several contributing 
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factors to the SS relationship have to be considered, for example vis­

cosity, plasticity, numbers of elements (i.e., fiber types), orientation 

and arrangement of these fiber elements (Gratz, 1931; Vidik, 1973). The 

fiber elements referred to here involve collagen, el astin and the gel-like 

matrix consisting primarily of muccopolysaccharides. Haut and Little 

(1972) attempted to formulate a constitutive equation for collagen fibers. 

The equation predicted strain rate and hysteresis effects only. It did 

not work for sinusoidal phenomenon. 

The approach of using an analogy consisting of idealized elements was 

used on biological materials by Alexander (1962) for the body wall of the 

sea anemone and by Snedlin (1965) for human bone. On the basis of the 

curves generated, Vidik (1969) suggested a mechanical analogy which was 

subsequently analyzed mathematically and verified experimentally by Frisen 

et al. (1969). It would seem from these studies that most biological 

tissues contain two types of element arrangement models. The Kelvin model 

combines the elastic and viscous elements in parallel, while the Maxwell 

model uses in-series coupling. 

Components in SS curves 

Burton (1954) proposed a structural-functional relationship of 

elastin, collagen and smooth muscle in the arterial wall. From elastic 

diagrams, he calculated the dynamic tangential modulus to be 6 x 10^ 

dynes/cm^ for smooth muscle, 3 x 10® dynes/cm^ for elastin and 10* 

dynes/cm^ for collagen. Based on the shape of the curves generated, he 

hypothesized that the collagen fibers had to be arranged parallel to the 

elastic fibers. This meant that the elastic fiber would be stretched 
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first when the vessel was distended. The collagen fibers, being stiffer, 

would be stretched at increased pressures. The stretching of the elastic 

fiber functioned to provide maintenance tension against normal blood 

pressure and pressure fluctuations. The smooth muscle provided active 

tension and contributed little to maintenance tension. In this conceptual 

model the most vital role of elastin fibers was to provide graded con­

tractions together with the smooth muscle. 

Burton's hypothesis was substantiated in 1957 (Roach and Burton). 

From distensibility curves, the functional interrelations of the various 

components in the arterial wall of human iliac arteries were elucidated. 

Elastic tension diagrams were obtained with fresh, formic acid-treated 

(to remove collagen) and trypsin-treated (to remove elastin) vessel seg­

ments. Curves recorded from fresh and formic acid-treated segments showed 

little change in shape at low pressures, though formic acid-treated seg­

ments were less distensible than fresh segments. At higher pressures 

(100 mm Hg) the trypsin-treated segments were more distensible. These 

findings confirmed earlier predictions that the elastic fibers functioned 

at low pressures, and played an insignificant role at pressures over 

100 mm Hg. Conversely, collagen fibers functioned to maintain tension at 

increased pressures. 

Bergel (1961) demonstrated increased elastic modulus during dilation 

of the arterial wall. Mean values for static elastic modulus at 100 mm Hg 

pressures were in dynes/cm^, 4.3 x 10® for thoracic aorta, 8,7 x 10® for 

abdominal aorta, 6.9 x 10® for femoral artery, 6.4 x 10® for carotid 

artery and 10® dynes/cm^ for smooth muscle. These values exceeded those 

obtained for smooth muscle by Burton by a factor of 15. 
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Burton (1954) and El den (1970) proposed that the modulus for the 

lower SS curve for ligament and skin in uniaxial tensile testing was 

mainly due to elastin fibers and the higher modulus on the steep part of 

the curve to be due to collagen fibers. This concept was partly supported 

by Daly (1969), who showed that skin treated with elastase has a steeper 

SS toe portion. Later work by Stevens et al. (1974) confirmed this find­

ing. These workers used highly purified elastin fibers of adult bovine 

ligamentum isolated in three ways (enzymatic digest, alkaline and formic 

acid pretreatments). The purity of these elastin fibers were controlled by 

amino acid analyses. Mechanical stretching and electron microscopy were 

performed simultaneously. Mechanical testing of the intact ligamentum 

nucleae showed two distinct regions during extension; the first was a 

reflection of elastin fibers while the second reflected collagen fibers. 

By subjecting each of these stretched muscle strips to digestion with 

either elastase or collagenase, specific slopes contributed by either 

elastin or collagen were generated. It should be emphasized that the 

elastin or collagen slope does not indicate the amount or degree of cross-

linkages of elastin or collagen in the tissue under examination. Bio­

chemical quantifications have to be performed to determine the concentra­

tion of these proteins. 

Very little is known about the elements which contribute to the 

ground substance of the tissue. Consequently the middle portion of the 

SS curve which reflects these elements is difficult to interpret. Kinedi 

et al. (1965) emphasized the significance of the geometrical orientation 

of the ground substance to the elastin fibers in SS relationships. Vidik 
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(1969) formulated that viscosity of the tissue is partly influenced by 

some fraction of this component. Jackson (1969) indicated that glyco-

aminoglycans contributed to the cohesion of the fibrillar structure. Not 

all the glycoaminoglycans involved are known. Biochemical analyses of the 

interfibrillar substances have yielded conflicting results with respect 

to SS relationships (Elden, 1970). 

Factors influencing the components of the SS curve - lipids 

Elastin The eventual loss of elastic tissue function appeared to 

be the result of a gradual uptake of lipid by the elastic lamellae fol­

lowed by enzymatic fragmentation and solubilization (Robert et al., 1972; 

Szigeti et al., 1972). Lipid deposition near or around the elastic fiber 

of the aorta was shown using labeled cholesterol in human arteriosclerotic 

patients (Kramsch et al., 1971). Similar findings in skin and aorta were 

reported with rats fed normal and high cholesterol diets (Szigeti et al., 

1972). Increased lipid content in skin elastic fiber was demonstrated in 

aged and arteriosclerotic patients (Bouissou et al., 1973). In rat aorta 

and sponge tissue, the total amount of radioactive cholesterol incorporat­

ed into the insoluble fibrous fraction, containing structural glycopro­

teins and elastin, depended on the cholesterol content of the diet (Jacotot 

et al., 1973). Kramsch et al. (1974) interpreted the accumulation of 

lipid at fragmented internal elastica as early manifestations of athero-

clerosis. The extent of fragmentation cannot be quantitated at present. 

Elastin is capable of binding large quantities of lipid (Kramsch et al., 

1971; Kramsch and Hollander, 1973). Normal arterial and lung elastin, 

even after alkali-extraction, contained 1-3% lipid. Elastin from plaques 
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from atherosclerotic patients contained as high as 37-40% lipid (Kramsch 

et al., 1971; Kramsch and Hollander, 1973). The increase in lipid content 

was attributed to large increases in cholesterol (80 fold increase), 

especially cholesterol esters, with minor changes in phospholipid and 

tryglyceride levels. The phospholipid-cholesterol (P/C) ratio declined 

with increasing severity of atheroma (Kramsch et al., 1971). This P/C 

ratio in aortic plaques of younger subjects was similar to that of normal 

aorta in older subjects. An abrupt fall in P/C ratio, due to an eleva­

tion of cholesterol, occurred in the plaques of older patients (Adams and 

TuQan, 1961). It had been argued that the binding of lipid to el astin in 

plaques was in fact due to an altered form of elastin. Kramsch et al. 

(1974) demonstrated the presence of lipopeptides in plaque elastin. These 

peptides usually appeared as products when alkali-insoluble elastin was 

treated with elastase. However, the origin of these peptides, that is, 

whether or not they originated from glycoprotein, collagen or elastin, 

remained unclear. 

Several mechanisms have been proposed for the association of elastin 

and lipid. Beta-lipoproteins appeared to be the main vehicles responsible 

for lipid and cholesterol entry into the arterial wall (Sandberg et al., 

1969; Gero et al., 1961; Jacotot et al., 1971). Their passage through the 

endothelium was demonstrated biochemically and radioautographically (Stein 

and Stein, 1971; 1972). The fragile ULDL and LDL lipoproteins were capa­

ble of squeezing through elastic laminae, which possessed changeable pore 

sizes depending on pH and other conditions (Robert et al., 1972). During 

their passage, the g-lipoproteins were irreversibly deformed and de­

natured, leading to separation of the lipid and peptide components by 
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separation. The presence of such peptides was demonstrated using 

immunofluorescent techniques (Walton and Williamson, 1968; Stein and 

Stein, 1972). The lipids liberated could react with el astin by inter­

calating in the hydrophobic peptide folds via hydrophobic stacking (Robert 

et al., 1972) or with the intercellular matrix. 

The role of other macromolecules in lipid deposition has also been 

considered. Bihari-Varga et al. (1968) and Gero et al. (1961) reported 

that proteoglycans could interact with lipoproteins through their acidic 

polysaccharide chains. Consequently lipoproteins were denatured, and 

deposited in situ. As proteoglycans of the heparin-sulphate and dermatan-

sulphate type occurred in the arterial wall (Richard, 1962), the first and 

final phases of lipid deposition were facilitated. Structural glycopro­

teins from pig aortas had 20-40% of the total dry weight as lipid, even 

after rigorous delipidation (Moczar and Robert, 1970). These lipids might 

arise, at least partially, from cell membranes. 

A mechanism has been proposed for the deposition of lipid into 

elastic fiber, built on the hydrophobic property of elastin. A schematic 

diagram of the process is shown in Figure 10. Lipids settle in the hydro­

phobic folds (hydrophobic stacking) of elastin. The fiber becomes dis­

tended and deformed, thus exposing susceptible peptide bonds for proteo­

lytic cleavage. Elastolytic enzymes were shown to exist in leukocytes 

(Janoff, 1972) and blood platelets (Robert et al., 1970; 1971). 

Cathepsins were shown to be affiliated with lipoproteins (Robert et al., 

1972). Other tissue elastases produced in situ might also be present. 

These enzymes could be responsible for the slow degradation of the elastic 

fiber. 
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Figure 10. Elastic fiber was represented as a peptide spring which became 
deformed and denatured by the insertion of lipid molecules 
within the hydrophobic peptide folds. Consequently the mole­
cules became increasingly exposed to proteolytic digestion 
(adapted from Jacotot et al., 1971). 
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With a loss in the integrity of the hydrophobic interaction of the 

peptide chains of elastin, a gradual loss in elasticity resulted from this 

lipid accumulation (Robert and Poullain, 1966). An increase in the tan­

gential dynamic of Young's modulus occurred in rabbit aorta when high 

levels of cholesterol were given (Band et al., 1973). Similar alterations 

occurred in cholesterol-fed chicks (Newman et al., 1971). 

Collagen Collagen, like elastin, possesses similar affinity to 

bind lipids, especially cholesterol. The accumulation of lipid into 

collagenous fiber might proceed at a slower rate than into elastin, though 

the mechanism of lipid infiltration was similar to that of elastic tis­

sues (Nikkari and Heikkinen, 1968). 

The alterations in connective tissue as a result of elevated choles­

terol intake, seemed to be mediated by cholesterol itself. Diets high in 

fat, particularly in saturated fats, which may induce elevated levels of 

circulating and tissue cholesterol and other lipids, could affect connec­

tive tissue via a mechanism similar to that of a cholesterol-rich diet. 

On the other hand, the influence of polyunsaturated fatty acids (PUFA) on 

elastin and collagen seemed to be more subtle. Their action has been 

associated with that of prostaglandins (PG) (Struyk et al., 1966; 

Vergroesen, 1972). Coronary flow was stimulated by PGFi and PGF2, while 

with certain cation ratios (K-Ca) PCFi^ and PGF2a could stimulate the 

contractile force in isolated frog and rat heart (Vergroesen and De Boer, 

1968). The influence of dietary linoleic acid on PG biosynthesis was 

studied by Hoor and deDeckere (1976). Preliminary data (Hoor et al,, 

1973) indicated a 50% (P<0.01) decrease of maximum contraction force in 

isolated papillary muscles from rats fed EFA-deficient diets compared with 
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that of rats fed 5% of calories as sunflower seed oil (5SS0). Rats on a 

2 week, fat-free dietary regimen revealed a 60% decline in papillary 

muscle contractile force compared to controls fed 10% of calories as SSO 

(lOSSO). Coronary flow in isolated perfused hearts of animals on 50% of 

calories as sunflower seed oil, soybean oil (SO), olive oil (00), hydro-

genated soybean oil (HSO) or lard for 6 days showed a dependency on the 

type of dietary fat. Coronary flow rates with the different diets were in 

decreasing order SSO > SO = HSO = 00 > lard (DeDeckere and Hoor, 1975). 

Left ventricular function of rats consuming 50% of calories as SSO was 

greater than those on mixed fat diets of either 45% of calories as HSO + 

5% of calories as SSO or 45% of calories as HCO + 5% of calories as SSO, 

respectively (Neely et al., 1967; Hoor and deDeckere, 1976). These 

effects were achieved regardless of length of feeding period (3 days vs. 

21 days). These results indicated that elevating the amount of dietary 

linoleic acid led to enhanced coronary flow and left-ventricular function, 

suggesting a function of linoleic acids involving PG synthesis. The 

underlying mechanism awaits elucidation. 

Age 

Changes of connective tissues with age showed several common fea­

tures, namely: cell death (Holliday and Tarrant, 1972), increased cata-

bolic activity (Hjertquist and Wasteson, 1972), increase in cross-linking 

(Bailey, 1965), lipid infiltration (Beaumont et al., 1963; Kramsch et al., 

1971; Szigeti et al., 1972), calcification (Ouzilou et al,, 1974) and 

changes in immune response (Walford, 1969). 

El astin In a 50-week study (Berry et al., 1972; Looker and Berry, 

1972), chemical and microscopic determinations indicated increases in 
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total elastin content with increasing age in male rat aorta. Previous 

work by Kao et al. (1961) had indicated negligible elastin turnover in rat 

aorta. Incorporation of i*C-lysine into polymeric elastin of rabbit aorta 

suggested continued synthesis with little exchange, or turnover. Cross-

linkages in elastin also increased with aging. In aging skin, Kenedi 

et al. (1965) found the "toe" part of the SS curve to diminish, while 

Jansen and Rottier (1957) failed to observe change. In aging humans, 

arterial elastin degenerated and became replaced by collagen fibers 

(Leoroy and Taylor, 1966). In contrast, Miller and Perkins (1927) re­

ported an increase in elastic tissue with age in human cardiac ventricles. 

Fahr (1906) found no variation in elastic fiber quantity in human atria. 

Lev and McMillan (1961) found no significant increase in elastin and 

collagen in the ventricles. 

Collagen The literature had yielded inconsistent reports on 

ventricular collagen change with age. Findings of decrease during the 

first 10-30 years of life (Wegelius and Knorring, 1964), increase 

(Clausen, 1962) and no variation (Blumgart et al., 1940; Lenkiewicz et 

al., 1972) in human hearts had been reported. Biochemical quantitation 

showed that collagen amounted to about \% of wet weight of heart tissue 

(Blumgart et al., 1940; Clausen, 1962). 

With increasing age, soluble collagen and glycoaminoglycans de­

creased, whereas insoluble collagen and the collagen/glycoaminoglycan 

ratio increased (Vogel, 1974). In rat skin, a correlation of tensile 

strength with either the amount of insoluble collagen or total hydroxy-

proline at various age intervals was reported. 
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Methods and Materials 

Design of experiment 

Two experiments, 2 and 3, were designed. In Experiment 2 the effects 

of dietary variations (fat level, fat saturation, frequency of feeding and 

length of feeding) on cardiac function were studied. Except for the omis­

sion of the 60 day feeding period, the design was identical to that used 

in Experiment 1, Section I. The design of Experiment 2 is shown in Figure 

n. Stress-strain response was used as an index of cardiac function. 

In order to correlate cardiac function to morphology. Experiment 3 

was designed. The histopathology of the myocardial cell in the right 

ventricle and ventricular septum was examined by electron microscopy. 

The design is like Experiment 1 with only one time period and one fre­

quency of feeding. Design of Experiment 3 is shown in Figure 12. 

Animal treatment Animal treatment was as described in Experiment 

1. In Experiment 2, two feeding periods were used. Rats were put on 

dietary regimens for either 30 or 90 days. In Experiment 3, littermates 

in sets of three were assigned to three diets. Only one feeding frequency 

(MF) and feeding period (90 days) was used. In Experiment 2 rats were 

killed after 30 and 90 days on the diet. They were lightly etherized then 

paralyzed by cervical dislocation. The heart was removed, washed, dried 

on filter paper, weighed and stored immediately in sealed plastic pouches 

at -20°. Cardiac stress-strain curves were run a week later. 

In Experiment 3 animals were guillotined on day 31 between 8-9 AM. 

Heart was excised by severing the major vessels. When contraction ceased, 

sections of the right ventricle and ventricular septum were taken. 
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Figure 12. Schematic design of experiment 3: 1 = littermates in sets of three, each assigned to a 
diet; 2=2% safflower oil as calories; 3 = 38% safflower oil as calories; 4 = 38% beef 
tallow as calories; 5 = meal fed (3 hr feeding out of a 24 hr period); 6=5 rats per. 
group 
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Procedures 

Stress-strain measurement 

Tissue preparation Hearts were thawed at 4°, then brought to room 

temperature in rat Kreb-Ringers solution (Table 13). This solution was 

prepared fresh weekly and stored at 4°. The tissue was mounted on a soft 

cork board for sectioning. A representative longitudinal base to apex 

rectangular strip was removed from the ventricular septum. Removal pro­

cedures were as follows: 

(1) remove atria 

(2) remove right ventricular wall with a wide U cut along the sides 

thus exposing the septum 

(3) cut left ventricle into longitudinal halves, then pinch down the 

flaps 

(4) section a thin rectangular strip of septum with a double-bladed 

knife. Blade separation was set at 0.5 cm. While sectioning, 

equal pressure to the knife was applied by pressing both blades 

simultaneously. This prevented tearing along the muscle edges. 

(5) record initial length, width and thickness of the unstretched 

septum with a ruler. 

Uniform sectioning was extremely critical in order to reduce muscle 

orientation difference which would affect stretching behavior. 

Stress-strain (SS) curves The instrument used to obtain stress-

strain curves consisted of a microdirect-drive manipulator^ controlled by 

^D. Koft Instrument, Model 1207B, Chicago, Illinois. 
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Table 18. Kreb-Ringers Solution 

% gm volume(l) Solution 

NaCl 0.90 18 2 1 

KCl 1.15 23 2 2 

CaClz 1.22 12.2 1 3 

KH2PO4 2.11 21.1 1 4 

MgSO^.YHgO 1.85 38.2 1 5 

NaHCOg 1.30 13.0 1 6 

Kreb-Ringers stock concentrate 

500 mis solution 1 

20 mis solution 2 

15 mis solution 3 

5 mis solution 4 

5 mis solution 5 

Store frozen for 1 month. 

Kreb-Ringers dilute solution 

200 mis stock concentrate 

32 mis solution 6 

928 mis distilled water 

0 
Store 0-4 for 1 week 
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a master unitJ This provided the mechanical force for stretching the 

muscle. The latter was mounted in series with a glass force-displacement 

2 transducer coupled with a recorder. The muscle was immersed completely 

in Krebs-Ringers solution in a 3" x 4" x 3" Plexiglas chamber. Chamber 

3 
temperature was maintained at 38® by a water bath equipped with a circu­

lating pump and a heat exchanger. Temperature in the chamber was checked 

periodically with an electrical thermistor. The muscle ends were attached 

between a lower stationary clamp and a movable upper clamp set in series 

with the transducer. The transducer was mounted on a moving platform 

driven by the manipulator. A signal generator was used to produce precise 

increments of stretch in microns. The transducer-recorder system was 

calibrated before each stretching period with a 30 g weight. This gave a 

pen deflection of 6 divisions on the chart paper. The baseline of the SS 

curve was taken at the point of zero strain. This implied that the muscle 

was under negligible stress. Three successive curves were generated for 

each muscle. At a paper speed of 50, each curve took 8-10 minutes to 

complete. The first curve was discarded. The second and third curves 

were superimposed on a light box. Superimposibility was taken as the 

criterion for uniform experimental conditions, e.g., clamp tightness, 

paper speed, muscle integrity, bath temperature, etc. The second curve 

was used to provide data for muscle elongation under given tensions. Each 

curve was considered complete when either the pen deflection exceeded 

^D. Koft Instrument, Model 1207S, Chicago, Illinois. 
O 
Bausch and Lomb, Rochester, New York. 

^Haake, F. J., Chicago, Illinois. 
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maximum chart space or when the tissue was torn. A calibration constant 

in li/cm was taken for each curve. At the end of each experiment an 

average of all the calibration constants was taken. This value was used 

to compare instrumental variability from day to day. 

Final length, width and weight of the stretched muscle were measured. 

Final length was taken as the inner distance between the clamp marks. 

Volume of the septum was determined by liquid displacement using a 

picnometer with a thermometer affixed to the stopper. 

Corrected SS curves Each curve traced out the length elongation 

pattern (strain) of the muscle under given loads (stress). This was a SS 

curve unadjusted for cross-sectional area and length difference. To ob­

tain cross-sectional area, the volume of the sample was divided by its 

length. To adjust for length, an elongation % was used. The actual 

strain became: 

elongated length (1) mn 
onginsl length \lo/ 

Thus a new plot of stress (g/cross-section area = cm^) against strain 

(l/lo X 100) was made for each muscle. 

From each SS curve the following parameters were evaluated: 

(1) initial slope representing elastin slope (ES) 

(2) final slope representing collagen slope (CS) 

(3) area under the arc, representing matrix (M) 

A composite SS curve (CSS) for each treatment group was also plotted. 

This curve represented an average of all the SS curves in a treatment 

group. Since there were 12 dietary treatments, 12 CSS curves were ob­

tained. By using similar scales for the X and Y ordinants for each CSS a 
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fast way of comparing cardiac distensibility between treatments was de­

veloped. A muscle became more or less distensible if its CSS was shifted 

right or left with respect to another CSS from another group. 

Collagen quantitation 

Collagen in most tissues is the only major source of hydroxyproline. 

Quantitation of hydroxyproline in experiment 2 yielded an indirect assess­

ment of collagen content in the heart. The method of Klein (1970) using 

ion-exchange chromatography was adopted. This method was based on the 

chromatographic separation of amino acids on sulfonated polystyrene 

cationic exchange resins (Moore and Stein, 1969). Hamilton and Anderson 

(1969) had demonstrated that hydroxyproline was the first unmodified amino 

acid to be eluted when citrate buffer (pH 2.9) was used. The separation 

from other amino acids was clean, fast and specific, thus permitting the 

use of any colorimetric procedure for hydroxyproline. 

Tissue hydro!ysates 

Septa in each dietary treatment were pooled. They were minced on a 

watch glass and about 0.8-1 g of tissue was weighed on glassine paper. 

The tissue and 10 ml of 6 N HCl in a 20-ml screw-capped Kimex culture tube 

were placed in boiling water for 1 hr or until the tissue was dissolved. 

The mixture was autoclaved for 3 hr at 15 lb pressure and 120°. The acid 

hydrolysate was evaporated over a rapid steam bath under a well-ventilated 

hood. A piece of moist pH paper was used to check acidity. Presence of 

HCl in the hydrolysate could also be detected easily by its characteristic 

pungent odor. When the hydrolysate was relatively free of detectable 

acid, it was dried and reconstituted with 4 ml of 0.1 M citric buffer 

(pH 2.90±.02). Black precipitate in the hydrolysate was removed by 
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filtration over a slow-flow filter paper (Whatman #2) or by centrifugation 

at 2,000 rpm for 5 minutes. Supernatant was remade to 4 ml with citric 

buffer. A 1 ml aliquot was layered on the column. Remaining supernatant, 

when well-covered, could be stored indefinitely at 4° without loss of 

hydroxyproline. 

Columns 

Packing Twelve glass columns in the specifications described by 

Klein were set up. Dowex-50 cation exchange resin\ 200-400 mesh, 8% 

cross-linked was washed twice with water and 0.25 N NaOH in alternation. 

The moist slurry was poured with stirring into the columns. Each column 

was filled to designated heights in less than two additions. This pre­

vented later cracking of the resin. The packed columns were washed with 

1 volume 0.25 N NaOH. Before each use the columns were regenerated by 

adding 0.2 M citric buffer (pH 2.90) until the eluant pHydrion paper^ 

turned the same color as the citric buffer. Columns could be left in­

definitely in 0.25 N NaOH, or for 18 hrs in 0.2 M citric buffer, pH 2.90. 

Calibration All twelve columns were calibrated simultaneously. 

Before the addition of the standards, top resin was flattened with the 

back of a transfer pi pet. This provided a uniform surface for sample to 

sink through at equal rate. One ml calibrating hydroxyproline stock 

solution (100 ug/ml) was layered with a pipet, which was rinsed twice with 

buffer. When all the standard had been taken up by the resin the column 

was filled to the top with 0.2 M citric acid (pH 2.90). The first 20 ml 

^Sigma Chemical Co., St. Louis, Missouri. 

2 Micro Essential Laboratory, New York. 
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of eluant was discarded. Ten 5 ml fractions were collected in 12 ml 

centrifuge tubes. A 10 ml fraction was collected thereafter. Hydroxy-

proline was measured colormetrically by the method described by Klein. 

Colorimetric measurement 

To 2 mis of sample or standard in a 12 ml centrifuge tube was added 

1 ml of freshly prepared 0.015 M CuSOt^-15% NaOH mixture. Contents were 

mixed. Subsequently, 0.5 ml of 8.4% H202was added and the mixture 

thoroughly mixed for 5 minutes to complete hydroxyproline oxidation. This 

was followed by incubation in a water bath at 70° for 10 minutes with 

constant agitation to destroy excess H2O2. Two and half ml Ehrlich's 

reagent was added and the tubes returned to the bath for 25 minutes. 

Tubes were cooled and optical densities were read within 1 hour at 540 nm 

1 2 
on a spectrophotometer with a digital readout system. Standards con­

taining 2, 4, 8, 12 or 16 meg hydroxyproline per 2 ml solution were 

assayed simultaneously. 

Hydroxyproline was eluted in the fractions collected between 50 and 

100 ml. Overall % recovery was 94.1. Elution time was about 20 ml/45 

minutes. 

Samples One ml of sample was layered as described earlier. The 

first 50 ml were discarded, and the following 50 ml were collected in a 

50 ml graduate cylinder. An additional 10 ml was collected in a 25 ml 

Erlenmeyer flask. This fraction was reserved in the event that hydroxy-

^Beckman D.IJ. spectrophotometer, model 2400, Beckman Instruments, 
Fullerton, California. 

2 Update Inc., Madison, Wisconsin. 
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proline elution was delayed. This happened when one or more of the fol­

lowing had occurred: 

(1) the resin was left dry in the column for too long 

(2) the resin was used repeatedly without consistent and thorough 

washing with 0.25 N NaOH 

(3) the tissue hydrolysate was too acidic, i.e., HCl evaporation 

incomplete 

(4) pH of the column or citric buffer was below 2.90+0.02 

El astin quantitation 

Elastin was quantitated by the method of Newman and Logan (1950). 

Pooled septa from each dietary treatment was used. Results for collagen 

and elastin amount were expressed as % hydroxyproline in each fraction. 

Electron microscopy 

Muscle sections from the right ventricle and ventricular septum were 

fixed for 3 hrs in Karnowski para-formaldehyde glutaldehyde mixture. They 

were stored overnight in isotonic Millinigs phosphate buffer (pH 7.2-7.4), 

later post fixed with osmium tetroxide. Sections were embedded in epon-

araldite mixture and dehydrated by a graded series of acetone (25, 50, 70, 

95 and 100%). After resins had polymerized, sections were cut and stained 

with uranyl-acetate in methanol. Post-staining with lead citrate fol­

lowed. Photographs were obtained using an electron microscope (RCA EMU-4). 

Statistical Analysis 

Statistical analysis was done as for experiment 1, using an un­

weighted analysis of variance for overall group comparisons, and a t-test 

between dietary treatments. 
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Results 

Two experiments, 2 and 3, were conducted. Experiment 2 assessed 

cardiac functional alterations. Experiment 3 focused primarily on morpho­

logical cellular changes of the ventricular myocardium utilizing electron 

microscopy. Variables for each of the experiments were given in the 

procedural section. 

Body weight, weight gain, food intake and food efficiency 

Data for body weight, weight gain, food intake and food efficiency 

for Experiment 2 only are given in the Appendix in Table 23. Results from 

these parameters confirmed the findings of Experiment 1 with similar diets 

and meal patterns as variables. General trends for all parameters were 

consistent in corresponding treatment groups of the two experiments. Data 

pertaining to cardiac function obtained in Experiment 2 are therefore 

applicable to corresponding groups in Experiment 1. 

Cgrdl 5C WclCjnt (Tsblc 19) 

Cardiac weights were expressed in g and g/100 g body weight (CW/BW). 

Cardiac weights expressed in either absolute or relative terms were un­

affected by dietary fat concentration. However LF-fed groups tended to 

have lower cardiac weights than those on high-fat diets. Values were 

1.25 vs. 1.40 g. Such trend was not observed in the CW/BW ratio (39 vs. 

39) between the two fat levels. 

Cardiac weights for SO groups were lower than those of BT groups 

(p<.05). This was seen in both the 30- and 90-day treatments. The CW/BW 

values for both groups were not different. 
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Table 19. Cardiac weights 

30 days 90 days 

g 
g/lOOgBW 

xlO-2 g 
g/lOOgBW 

xlO-2 

LF-AL 1.16±.04* 38±1 1.58+.08 30±1 

LF-MF 0.87±.04 40+2 1.40+.05 32+2 

SO-AL 1.25±.03 40±1 1.58±.05 32±1 

SO-MF 1.10+.03 39±1 1.46±.08 31 ±2 

BT-AL 1.29±.03 38±1 1.74±.07 33±1 

BT-MF 1.14±.03 40+1 1.63±.06 34±1 

ANOVA 

a. q/lOOqBW 

Fat level NS NS 

Fat saturation p<.05 NS 

Age p<.01 p<.05 

Meal pattern NS NS 

*Mean ± SEM. 
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With age, there was a concomitant increase in cardiac weights (p<.01) 

and a decrease in CW/BW values (p<.05) since rates of body weight increase 

exceeded those of cardiac weight. Between the two time periods, cardiac 

weight increased by approximately 38%, while body weight increased by 69%. 

This implies that cardiac weight gain might be proportional to gain in 

lean body mass. 

Meal-fed animals, because of smaller body weights, had lower cardiac 

weights compared to ad libitum-fed controls. Consequently CW/BW values 

for both patterns were similar. 

Ventricular thickness (Table 20) 

A variable mean of 0.21 cm was obtained regardless of amount of fat 

consumed. Consequently fat level did not affect ventricular thickness. 

A similar effect was seen with varying fat saturations. Mean values were 

0.21 cm and 0.22 cm for SO and BT groups, respectively. However, there 

was an increase in ventricular thickness with age for all treatments 

(p<.05). Meal-fed rats had thinner ventricular walls than ad libitum-fed 

controls (p<.01). 

Stress-strain curves 

A model stress-strain response curve is shown in Figure 13. The 

stress-strain (SS) curve for each septum was normalized for length and 

cross-sectional area. For each group a composite stress-strain (CSS) 

curve, representing the group average, was constructed. Since 12 treat­

ment groups were involved, 12 CSS curves were generated (Figures 14-19). 
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Table 20. Ventricular septal cross-sectional area, thickness, length and weight 

30 Days 90 days 

Cross- Thick­ Cross- Thick­
sect. ness Length Weight sect. ness Length Weighl 
cmf cm cm 9 cm^ cm cm 9 

LF-AL 0.095 0.21 0.99 0.120 0.086 0.25 0.97 0.101 

LF-MF 0.089 0.17 0.99 0.092 0.091 0.19 0.98 0.110 

SO-AL 0.110 0.20 0.97 0.105 0.100 0.28 0.99 0.090 

SO-MF 0.098 0.17 0.92 0.099 0.103 0.19 0.99 0.101 

BT-AL 0.126 0.20 0.99 0.120 0.116 0.29 1.01 0.096 

BT-MF 0.102 0.18 1.01 0.102 0.120 0.19 0.99 0.091 

ANOVA 

Thickness 

Fat level N.S. 

Fat saturation N.S. 

Aging P<.05 

Meal pattern P<.01 



www.manaraa.com

134 

CM 

o> 
/collagen slope(CS) t/t 

t/> 

to 

ST  R  A INd / l g  X  TOO)  

Figure 13. A model stress-strain response curve. Stress is expressed as 

g/cn.= , strain as original llngthllo) " * "f the 
curve is influenced predominantly by elastin, portion B by the 
ground substance (matrix) and portion C by collagen. 
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The following basic rules were employed in analyzing CSS curves. A 

shift in a curve to the left with respect to a designated control was 

considered to be less distensible or stiffer. Conversely, a shift to the 

right with respect to the control was considered to be more distensible 

or less stiff. 

Each curve was divided into three regions, namely initial (elastin), 

middle (matrix) and final (collagen). The slopes at the initial and final 

regions were measured (Figure 13). A displacement of a stress-strain 

curve to the right of a control curve (i.e., the curve was more distensi­

ble than the control curve) could be the result of one or several of the 

following: a decrease in elastin slope, an increase in the length of the 

elastin region, a decrease in collagen slope, and finally a decrease in 

matrix slope. Likewise, when the curve displacement was to the left of 

control, the opposite events occurred. 

Data for the matrix portion are not presented because of theoretical 

uncertainties related to curve analysis. 

Composite stress-strain curves (Figures 14-19 ) 

The influence of dietary fat level on the position of composite 

stress-strain (CSS) curves appeared to depend on the fat source. When 

dietary fat level was elevated, the CSS curve of the high fat (SO + BT) 

groups was shifted to the right of the LF CSS curve (Figure 14). How­

ever, this displacement was influenced primarily by group SO and not BT. 

The CSS curves from group BT appeared to be similar to those of group LF 

based on very small shift differences. The pattern of shift between these 

groups, however, was not consistent, e.g., CSS curves from groups 
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Figure 14. Composite stress-strain curves with fat level as a 
variable. Y axis represents stress (force/cross-
sectional area = g/cmf) and X axis represents strain 
(elongation %). Animals were fed for 3 (MF) or 24 
hours (AL) per day, diets containing as % calories 
either 2% safflower oil (LF), 38% safflower oil (SO) 
or 38% beef tallow (BT) for 30 and 90 days. 
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Figure 15. Composite stress-strain curves with fat saturation as a 
variable. Y axis represents stress (force/cross-sectional 
area = g/cm^) and X axis represents strain (elongation %). 
Animals were fed for 3 (MF) or 24 hours (AL) per day, diets 
containing as % calories either Z% safflower oil (LF), 38% 
safflower oil (SO) or 38% beef tallow (BT) for 30 and 90 
days. 
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Figure 16. Composite stress-strain curves with aging as a variable. 
Y axis represents stress (force/cross-sectional area = 
g/cm^) and X axis represents strain (elongation %). 
Animals were fed for 3 (MF) or 24 hours (AL) per day, 
diets containing as % calories either 2% safflpwer oil 
(LF), 38% safflower oil (SO) or 38% beef tallow (BT) 
for 30 and 90 days. 
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Figure 17. Composite stress-strain curves with aging as a variable. 
Y axis represents stress (force/cross-sectional area = 
g/cmZ ) and X axis represents strain (elongation %). 
Animals were fed for 3 (MF) or 24 hours (AL) per day, 
diets containing as % calories either 2% safflower oil 
(LF), 38% safflower oil (SO) or 38% beef tallow (BT) 
for 30 and 90 days. 
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Figure 18. Composite stress-strain curves with meal pattern as a 
variable. Y axis represents stress (force/cross-sectional 
area = g/cmf) and X axis represents strain (elongation %). 
Animals were fed for 3 (MF) or 24 hours (AL) per day, diets 
containing as % calories either 2% safflower oil (LF), 38% 
safflower oil (SO) or 38% beef tallow (BT) for 30 and 90 
days. 
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Figure 19, Composite stress-strain curves with meal pattern as a 
variable, Y axis represents stress (force/cross-sectional 
area = g/cm^ ) and X axis represents strain (elongation %). 
Animals were fed for 3 (MF) or 24 hours (AL) per day, diets 
containing as % calories either 2% safflower oil (LF),38% 
safflower oil (SO) or 38% beef tallow (BT) for 30 and 90 
days. 
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30-BT-AL, 90-BT-AL and 90-BT-MF were shifted slightly left of the corre­

sponding LP groups. Conversely, the CSS curve from group 30-BT-MF was 

displaced slightly to the right of that of 30-LF-MF (Figure 14). 

The shift of the CSS curves from SO groups was predictable, being con­

sistently to the right of CSS curves from either LF or BT groups. This 

displacement to the right of SO curves, with respect to either BT of LF 

curves, was seen in both feeding periods, being more apparent after the 

30-day period and especially with meal feeding (Figures 18-19). 

In most groups CSS curves tended to be shifted to the left with aging, 

CSS curves from most treatments tended to be shifted left (Figures 16-17). 

The CSS curves of most groups, except for those of group 90-S0-MF, 

were shifted to the left with meal feeding. In general the meal feeding 

effect was more apparent at the 30- compared to the 90-day feeding period. 

The shifts in CSS curves may be related to variations in cardiac dis-

tensibilities. In general, cardiac distensibility was increased with saf-

flower oil feeding, and decreased with either beef tallow or low fat feed­

ing. Furthermore beef tallow feeding generated a similar ventricular dis­

tensibility response as did low fat feeding. Increased ventricular dis­

tensibility occurred as early as day 30 with safflower oil feeding. Aging 

caused an apparent increased resistance to stretch in most groups. In ad­

dition, meal feeding appeared to reduce distensibility, regardless of 

dietary types. 

Elastin slope (ES) Table 21 

Elastin slopes were not influenced by variations in dietary fat 

level. There was no significant difference when the elastin slope of 

group LF was compared to that of either group SO or BT due in part to 

large individual variations in group 30-LF-MF. Moreover, the mean elastin 
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Table21. Elastin and collagen slopes of CSS curves 

Age 2 months Age 4 months 

30 Days 90 Days 

Elastin 
xlQ-i g/cmf 

Collagen 
g/cm2 

Elastin Collagen 
xlO"! g/cm^ g/cm* 

LF-AL 2.6±.5® 3.7±.6 2.4±.3 3.8±.4 

LF-MF 0.5+.1 4.4±.4 2.4±.5 3.9±.3 

SO-AL 1.6+.2 3.9±.5 2.9±.4 3.1±.2 

SO-MF 1.2±.l 3.4±.4 3.7±.4 2.9±.3 

BT-AL 1.6±.4 3.4±.3 2.9+.4 3.6±.3 

BT-MF 2.4±.4 4.4±.5 3.8±.7 4.3±.4 

ANOVA 

Fat level Elastin Collagen 

LF vs. (SO + BT) NS NS 

LF vs. SO NS NS 

LF vs. BT NS NS 

Fat saturation 

SO vs. BT p<.025 NS 

Age 

30 vs. 90 NS NS 

LF 30 vs. 90 NS NS 

SO 30 vs. 90 p<.05 NS 

BT 30 vs. 90 p< . 05 NS 

Meal pattern overall NS NS 

30 NS NS 

90 NS NS 

*Mean ± SEM. 
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slope value for this group was unusually low for reasons which will be 

presented in the discussion. There was, however, a fat-saturation effect. 

This was apparent when group SO was compared to group BT (p<.025). The 

decrease in elastin slope with SO was most apparent at 30 days. At 90 

days, the elastin slope value for group SO was similar to that of group 

BT. An overall age related increase in elastin slope was observed. This 

effect, however, was attributable to significant increases in slopes of 

groups SO (p< .05) and BT (p<.05). There was no age related increase in 

diet LF, due to large standard deviations. 

There did not seem to be a consistent pattern of variation in elastin 

slope values with meal feeding. Consequently a significant meal pattern 

effect was not observed. 

Collagen slope (Table 21) 

In general, collagen slopes did not seem to be influenced by eleva­

tion in diet at any fat level. The overall fat level effect was not 

significant when group LF was compared to groups SO and BT. Collagen 

slope values of group SO were consistently lower than those of groups LF 

and BT at both feeding periods. The mean values for group SO, LF and BT 

were 331, 396 and 393 g/cmf, respectively. The collagen slope response 

with beef tallow feeding was similar to that with low fat feeding. 

When SO and BT groups were compared, the greatest differences in 

collagen slopes were obtained with the 90-day treatment (p<.01). 

Neither age nor meal pattern had any significant effects on collagen 

slope values. 
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El astin and collagen content (Table 22) 

The % hydroxyproline in either elastin or collagen was used to 

estimate tissue level of these two proteins. 

When group LF was used for comparison, a significant increase in % 

hydroxyproline in elastin was apparent when safflower oil was used 

(p<.05). However the % hydroxyproline in elastin varied little when beef 

tallow replaced safflower oil as source of fat. The variable mean values 

were 1.12%, 1.35% and 1.15% for diets LF, 30 and BT, respectively. How­

ever, when the two high fat groups were combined and then compared with 

the LF group, as shown in the ANOVA table, the overall fat level effect 

was lost. The variable means values were 1.12% and 1.26% for LF and 

SO + BT, respectively. 

On the other hand, the % hydroxyproline in the collagen fraction was 

not influenced significantly by either fat level or fat saturation. The 

range values for the three diets were small, falling between 1.5-1.8%. 

In general, there was an apparent decrease in % hydroxyproline in 

elastin with aging. The average decrease for all treatment groups between 

the two time periods was approximately 38%. Meal feeding did not appear 

to affect % hydroxyproline in elastin to a significant level. The % 

hydroxyproline in collagen appeared not to be influenced significantly by 

either age or meal pattern. 

Collagen to elastin ratio, C/E (Table 22) 

The collagen to elastin ratio, C/E, was calculated by dividing % 

hydroxyproline in collagen by % hydroxyproline in elastin. 

The influence of dietary fat level on the C/E ratio appeared to de­

pend on the type of fat used. When beef tallow was used as fat source. 
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Table 22. Cardiac muscle: % elastin (E) or collagen (C) based on OH-proline, and C/E ratio 

Treatment 

Age (mth) 2 Age (mth) 4 

Treatment 

30 Days 90 Days 

Treatment Elastin Collagen C/E Elastin Collagen C/E 

AL l.ll±.l* 1.5±.2 1.35±.05 1,07±.2 1 .6±.05 1.49±.05 
LF 

MF 1.10t.1 1.5±.l 1.45±.04 1.20+.3 1 .7±.l 1.41±.04 

AL 1.42±.l 1.5±.l 1.05±.02 1.35±.2 1 .5±.l 1.11±.03 
SO 

MF 1.3U.05 1.6±.l 1.22+.02 1.30+.2 1 .7±.l 1.30+.03 

AL 1.20±.l 1.7±.l 1.411.03 1.17±.2 1 .8±.05 1.54±.05 
BT 

MF 1.25±.l 1.8±.1 1.44±.06 1.08±.l 1 1+
 

O
 

CJ
I 

1.57+.05 

ANOVA 

Elastin Collagen m 

Fat level N.S. N.S. N.S. 

Fat saturation P<.05 N.S. P<.05 

Age N.S. N.S. N.S. 

Meal pattern N.S. N.S. N.S. 

®Mean ± SEM. 
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there was little difference in C/E ratios between BT and LF groups. The 

variable mean values for these groups were 1.49 and 1.43 for BT and LF, 

respectively. Conversely, when safflower oil was substituted as fat 

source, the C/E variable mean value for group SO was reduced to 1.17. 

This decrease was significantly lower (p<.05) than either that of group LF 

or group BT in both the 30- and 90-day feeding periods. 

In general, C/E tended to increase with age. The percent increase 

from day 30 to day 90 with diets LF, SO and BT was 4, 6 and 9, respec­

tively. Similarly, the C/E ratio appeared to increase with meal feeding. 

Electron microscopy 

Left ventricular and ventricular septal mycocardial cells were anal­

yzed for fine structure modifications (Figures 20-25), 

The following organelles were examined: (1) plasma membrane, (2) nuclear 

membrane, (3) mitochondrial membranes, (4) sarcoplasmic reticulum, (5) 

Golgi apparatus, (6) intercalated discs, (7) myofibrils, (8) collagen 

fibers, (9) nuclei and nucleoli, (10) abnormal lipid inclusions, (11) 

glycogen deposits, (12) vacuoles, (13) lysosomes. 

No differences in ultrastructures were found which could be asso­

ciated with any of the diets (LF, SO and BT) used. No structural or 

cytoplasmic abnormalities were observed; nor was any type of damage de­

tected. Plasma, nuclear and mitochondrial membranes appeared normal; no 

increase in number of mitochondria was observed. Glycogen deposits were 

low in all instances, with no detectable group differences. Areas of 

myofibrillar disruption or degeneration did not occur. Ribosomes, nuclei 

and nucleoli were normal. Lysosomes were observed occasionally in all 
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Figure 20. A thin myocardial section from the right ventricle of a rat 
allowed access to food 3 hours per day (10480). Animal 
consumed a diet containing 2% safflower oil as calories for 
90 days. Magnification x20,000. A. Mitochondria. B. 
Myofibril. C. Z line. 
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Figure 21. A thin myocardial section from the right ventricle of a rat 
allowed access to food 3 hours per day (10731). Animal 
consumed a diet containing 38% safflower oil as calories 
for 90 days. Magnification xl7,000. A. Mitochondria. B. 
Sarcolemma. C. Myofibril. D. Vesiculated region of 
sarcolemma. E. Lipid droplet. 
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Figure 22. A thin myocardial section from the right ventricle of a rat 
allowed access to food 3 hours per day (10484). Animal con­
sumed a diet containing 38% beef tallow as calories for 90 
days. Magnification X18,000. A. Mitochondria. B. Sarco-
lemma. C. Intercalated disc. 
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Figure 23. A thin myocardial section from the ventricular septum of a 
rat allowed access to food 3 hours per day (10710). Animal 
consumed a diet containing 1% safflower oil as calories for 
90 days. Magnification x27,400. A, Sarcolemma. B. 
Mitochondria. C. May be nucleus. D. Z line. E. Cross-
sections of collagen fibers (white spots). F. May be 
membrane whirls. 
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Figure 24. A thin myocardial section from the ventricular section of a 
rat allowed access to food 3 hours per day (10786). Animal 
consumed a diet containing 38% safflower oil as calories for 
90 days. Magnification x20,000. A. Mitochondria. B. 
Z line. C. Lipid droplet. 
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Figure 25. A thin myocardial section from the ventricular septum of a 
rat allowed access to food 3 hours per day (10495). Animal 
consumed a diet containing 38% beef tallow as calories for 
90 days. Magnification xl7,600. A. Mitochondria. B. 
Z line. C. Myofibrils. 
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O 
groups. Collagen fiber width was approximately 600 A, which is within 

normal range. A multiple intercalated disc was seen in one case (BT-

septum), though intercalated junctions were normal in all instances. No 

unusual lipid droplet proliferation was seen in any of the groups. 

Discussion 

The functional-structural significance of the stress-strain curve 

has been determined experimentally and mathematically (Burton, 1954; 

Roach and Burton, 1957). Each curve is influenced simultaneously by 

three factors, namely elastin, interfibrillar substances (matrix) and 

collagen. The initial linear portion is attributed to the influence of 

elastin, the middle curve portion to the matrix, and the final linear 

portion to collagen. Due to the heterogeneity of the stress-strain 

curve, the use of linear regression during statistical analysis has been 

avoided since a regressed line may discount contributions of each indi­

vidual factor. Consequently each curve was analyzed by measuring initial 

and final slopes, and area under the curve in the middle portion (Figure 

13). This method, however, had its drawbacks. It was difficult to 

measure initial slopes for curves with short initial portions. In par­

ticular, curves from group 30-LF*MF had unusually abrupt initial portions, 

making assessment of the initial slopes by angle measurements difficult. 

As a result, elastin slopes might have been underestimated in this group. 

This problem arose when the muscle strip was too short to fit completely 

between the clamps during mounting. Consequently, the muscle was stressed 

at the beginning of the experiment. The baseline taken did not register 

true zero tension, and the instrument was not sensitive enough to adjust 
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for this. In addition, a short muscle left little end spaces for a 

tight grip of the clamps. Subsequently, slippage occurred occasionally. 

When this happened the stress-strain curve was distorted and pushed out of 

alignment. Muscle strips from group 30-LF-MF were shorter because heart 

sizes were smaller, compared to other groups. Similar problems with im­

proper baselines and false starting points marring interpretations had 

been reported by other investigators (Hembrough and Riedesal, 1971). 

The influence of the matrix on either el astin or collagen slope was 

not assessed. To obtain meaningful data, digestion of the muscle with 

either elastase or collagenase, following stretching, would be required. 

The digested muscle would have to be stretched under conditions (tempera­

ture, load calibration, etc.) identical to those used previously for the 

initial stretch experiment. The resulting curves would represent essen­

tially pure elastin or collagen curves. This procedure, however, lacks 

reliability, since enzyme digestion does not always yield pure products. 

In addition, the digested muscle has to be free of tear before restretch-

ing. 

In addition to the technical difficulties just described, the func­

tional -structural significance of the matrix curve portion is only poorly 

understood. Some acid mucopolysaccharides in the matrix, e.g., hyluronic 

acid, chrondriotin, chrondriotin sulphates, denuratan sulphates, heparin, 

etc., are reported to affiliate in the lipids and to vary in concentra­

tions with high cholesterol intakes, the presence of atherosclerotic 

lesions, and aging. Unfortunately, the impact of these changes on visco-

elastic properties is not known. Consequently, stress-strain data from 

the matrix cannot be related to structural alterations. 
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Measurements of stress-strain response of the ventricles upon mechan­

ical stretching indicated increased distensibility in groups receiving 38% 

safflower oil as calories in contrast to groups receiving either 38% beef 

tallow as calories or 1% safflower oil as calories. It appeared that 

increased ventricular distensibility was caused, in part, by changes in 

the elastin component. These changes occurred as early as 30 days on the 

diet, becoming less apparent with prolonged feeding to 90 days. Elastin 

slopes and collagen to elastin ratios decreased with high level of poly­

unsaturated fat feeding. These declines were associated with increased 

elastin in tissues of groups receiving 38% safflower oil. Conversely, 

collagen slopes and tissue collagen levels were not varied significantly 

by any of the experimental variables. These observations seem to imply 

that alterations in collagen (structural and tissue level) either do not 

occur with any of these variables, or occur at a slower rate than those 

related to elastin, and that the duration of our experiment was not long 

enough to cause major changes. Though fasting had been shown to decrease 

collagen synthesis in guinea pig skin (Chvapil, 1958), it could be that 

the 21 hours fast imposed here on meal fed rats were not severe enough to 

reduce significantly collagen synthesis. Work by Nikkani and Heikkinen 

(1968) indicated that in arterial vessels lipid infiltration into the 

intercarlated spaces of collagen fibers occurred via the same mechanism as 

in elastin fibers, though at a slower rate. 

Increased ventricular distensibility correlated well with reduced C/E 

ratios. In blood vessels, a similar correlation was also observed 

(Burton, 1954; Roach and Burton, 1957). Conversely, in blood vessels, a 
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high C/E ratio was reported when collagen fibers increased leading to re­

duced distensibility and increased inclination to atherosclerosis. The 

findings of Wong et al. (1975) indicated reduced C/E ratios in aortas of 

cholesterol fed cockerels subjected to physical exercise compared to in­

creased C/E ratios in cholesterol fed, unexercised birds. In addition, 

cockerels on plain mash demonstrated little changes in C/E ratios. The 

authors concluded that the reduced C/E ratios in the exercised group 

indicated reversal of the severity of atherosclerosis. 

In the present study, collagen level was not influenced by any of the 

dietary variables used. Elastin level, on the contrary, was increased with 

safflower oil feeding, and not with beef tallow- or low-fat feeding. The 

study of Wong et al. (1975) with birds showed decreases in both collagen 

and elastin levels with cholesterol feeding and no exercise. The apparent 

increase in elastin in the present study presents an interesting question 

as to the effects of polyunsaturated fatty acids on elastin metabolism. 

Increased elastin in the tissue of SO-fed rats in our experiment 

could be due to a) increased synthesis or decreased degradation of elastin 

as induced by safflower oil feeding, or b) increased catabolism stimulated 

by beef tallow and low fat feedings. The effects of high level linoleic 

acid (about 79% in safflower oil) on elastin metabolism are not known, 

though diets rich in linoleic acid (e.g., 50% sunflower seed oil) are re­

ported to stimulate coronary flow and left ventricular functions. These 

increases are associated with increases in prostaglandin (PG) synthesis of 

which linoleic acid is known as a precursor (Vergroesen, 1976). Hwang 

et al. (1975) demonstrated that the serum concentration of PGEi and PGFza 

were higher in rats fed a linoleate-rich diet than in rats fed a diet 
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supplying equivalent levels of fat, but a low amount of linoleate. Prosta­

glandins PGEi and PGEz are reported to stimulate coronary flow of several 

animal species, including rats, while PGFia and PGFaa under certain condi­

tions of Kt/Ca*2 can stimulate contractile forces in isolated rat hearts 

(Vergroesen, 1972). At concentrations of 10"^^M, PGEi elevates cAMP 

levels in myocardial preparations via stimulation of adenyl cyclase activ­

ity (Klein and Levey, 1971). In addition, PGE2 and P6A1 produce similar 

effects at lOrMM, whereas PGFia and PGFza are not active. The F type 

apparently does not interact with adenyl cyclase, however cGMP may be a 

mediator pf PGF^ action in blood vessels (Dunlam et al., 1973). The 

effects of PG and cAMP on smooth muscle activity and elastin synthesis are 

less certain. Though safflower oil feeding indicates higher elastin con­

tent, we are unable to say conclusively from our experiment whether this 

increase is a genuine increase over normal due to the absence of a proper 

control group consuming a nonpurified diet. Consequently, a mechanism for 

increased distensibility with SO feeding cannot be deduced without further 

experiments. 

Animals on either beef tallow- or low-fat diets indicated decreased 

ventricular distensibility compared to ventricular distensibil ity of ani­

mals on safflower oil diet. Stress-strain curves from beef tallow groups 

behaved relatively similar to those from low-fat groups. Similarity in 

distensibility between beef tallow- and low-fat groups is not fully under­

stood. It may be that the rates of lipid infiltration into cardiac 

elastin are similar in these animals. The finding of Dupont et al. (1972) 

reported a tendency of beef tallow- and low-fat rats to accumulate 
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saturated and monounsaturated fatty acids in their tissues. In general, 

decreased distensibility may be related to one or several of the follow­

ing: a decrease in elastin, an increase in collagen, an increase in 

either collagen or elastin cross-linkages, and finally an increase in 

matrix viscosity attributable to alteration in matrix composition, 

in elastin, an increase in collagen, an increase in either collagen or 

elastin cross-linkages, and finally an increase in matrix viscosity 

attributable to alteration in matrix composition. 

Decreased distensibility in blood vessels correlates with increased 

tissue and serum lipids (Jacotot et al,, 1973; Newman et al., 1971; Band 

et al., 1973). Focal deposition of cholesterol, primary cholesterol 

esters, phospholipids and tryglycerides are causes of elastin fragmenta­

tion as well as early signs of atherosclerosis (Kramsch and Hollander, 

1973; Adams and TuQan, 1961). These lipids are derived from serum LDL and 

ULD fractions (Robert et al., 1972). In our experiment cardiac total 

lipid content was not assessed. However, the finding of Deere (1973) 

indicated little variation in cardiac total lipid content when adult rats 

were fed diets either free of fat or containing 40% of calories as saf-

flower oil or beef tallow. Similar results were obtained when young rats 

were fed diets containing either corn oil or beef tallow for 15 weeks 

(Egwin and Kummsrow, 1972). In both studies, the cardiac phospholipid 

fraction increased with feeding safflower oil. 

Band et al. (1973) reported a negative correlation of serum choles­

terol concentration to thoracic aorta distensibility in rabbits. In con­

trast, serum cholesterol concentration and aortic distensibility were not 

correlated in rats. Similar findings were reported by Hembrough and 
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Riedesal (1971) who examined abdominal aorta of rats. In Experiment 1 of 

the present study, plasma cholesterol did not correlate with cardiac 

distensibility, and was not influenced significantly by diet. Total 

plasma cholesterol concentration may not be a good measure of cholesterol 

entrapment into connective tissue. Rather it is the compartmentation of 

plasma cholesterol that may be critical, i.e., cholesterol distribution in 

the lipoproteins, specifically in LDL and VLDL, since cholesterol trans­

ports across membrane and into elastin fibers is facilitated by low density 

lipoproteins. 

In a preliminary study with selected groups, we found little varia­

tion in cardiac cholesterol concentrations in rats on the 90-day regimen, 

regardless of diet. In every group, free cholesterol far exceeded that of 

esterified cholesterol, e.g., 96% in group LF, 99% in group SO and 98% in 

group BT. Heere (1975) had shown a similar predominance of free over 

esterified cholesterol in cardiac tissues of adult rats fed diets similar 

to those used in this present study. The mean values were 72%, 99% and 

92% with LF, SO and BT diets, respectively. Furthermore total cardiac 

cholesterol concentration was not influenced by any of the diets used. 

Carlson (1975) reported that though cardiac cholesterol concentrations were 

not influenced by diets (low fat, safflower oil and beef tallow) in the 

adult rats, the incorporation of H-^^C-cholesterol into cardiac tissue of 

safflower oil fed rats was higher than that of either low fat or beef 

tallow fed animals. 

Evidence is lacking at the present time for an association of cardiac 

lipids (content and composition) to cardiac distensibility. Cardiac lipids 
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are not as responsive to dietary modifications, particularly dietary fat 

alterations, as arterial lipids. 

The effects of aging and meal feeding on cardiac tissue were similar. 

Both variables reduced cardiac distensibility. Other laboratories (Robert 

et al., 1972; Szigeti et al., 1972; Bouissou et al., 1973) have reported 

increased elastolysis in blood vessels and dermal layer of the skin with 

aging, due in part to lipid deposition in elastin fibers. Aging may in­

crease elastin-cross linkages, resulting in stiffer, less elastic fibers. 

Our results indicated a tendency toward decreased elastin content with age. 

This decrease, however, was not significant due to large standard devia­

tions within groups. The work of Kane et al. (1976) with Syrian golden 

hamsters reported decreased ventricular distensibility with aging. The 

authors suggested that the aging heart does not normally undergo substan­

tial alterations in passive properties that affect the muscle cells and 

fibers, but rather that observed changes in stress-strain relationships are 

attributable to alteration in ventricular size only. 

The effect of meal feeding on cardiac distensibility is not well 

documented. However, studies related to fasting have been reported. 

Fasting and subsequent refeeding are known to cause hypertension in rats, 

dogs and man (Bernardis and Brownie, 1965; Brozek et al., 1948; Wilhelmj 

et al., 1951). Hembrough and Riedesal (1971) demonstrated decreased dis­

tensibility in the rat abdominal aorta with long term fasting and subse­

quent refeeding. Decreased distensibility, however, was not related to 

diet, i.e., control versus dextrose. In this present experiment, decreased 

distensibility with meal feeding cannot be explained by either changes in 
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elastin slopes, which do not show a consistent pattern of variation, or 

changes in elastin content. We speculate therefore that decreased dis-

tensibility with meal feeding may be influenced by the matrix. Unfortu­

nately there is little information on the effect of meal feeding on the 

components of the matrix. 

Ultrastructural examination failed to bring out differences in myo­

cardial cells, regardless of dietary variables tested. Reeves (1971) who 

used rat hearts perfused with either glucose or palmitate, also found 

little differences in microscopic examinations of cardiac tissues, in spite 

of differences in contractibilities. Likewise Sulkin and Sulkin (1967) 

reported no differences in cardiac mitochondria, sarcoplasmic reticulum or 

Golgi apparatus between young and old rats. 
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SUMMARY AND CONCLUSION 

Three experiments were designed to study changes in cholesterol 

metabolism, cardiac stress-strain response and cardiac morphological 

alterations associated with variations in dietary fat level and satura­

tion, meal pattern and age. A model using male rats, undergoing rapid 

development, was used. In experiment 1, 30 days old rats weighing approxi­

mately 100 g, were assigned to one of three diets containing as % calo­

ries: 2% safflower oil (LF), 38% safflower oil (SO) or 38% beef tallow 

(BT). Animals consumed these diets for either 30, 60, or 90 days, corre­

sponding to chronological ages of 2, 3 or 4 months. Animals ate their 

food ad libitum (AL) or in a 3 hour meal (MF). Lighting schedule was 

reversed with dark hours coinciding with feeding hours. 

The same experimental design was used in Experiment 2 with the omis­

sion of the intermediate (3 months) age group. In Experiment 3, only the 

longest feeding period (90 days, 4 months old) and only the meal-feeding 

pattern were used. 

In Experiment 1, acute changes in cholesterol metabolism, specifical­

ly in the rapidly equilibrating pools of serum, liver, and small intestine 

were assessed. Low-level radiotracers were administered to estimate 

relative rates of synthesis, degradation, excretion and distribution of 

endogenous cholesterol. Each animal was injected 2.5 ]iC/0.5 ml saline 

4-i^C-cholesterol, 6 days prior to, and 50 uC/0.5 ml saline 'H-acetate, 

2 1/2 hours prior to termination. Cholesterol was assessed as digitonin 

precipitable steroids (DPS). Recovery of ^^C-counts in plasma, hepatic 

and intestinal DPS was interpreted as indicative of relative rates of 
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cholesterol distribution of retention in these tissues. Recovery of 

counts in plasma, hepatic and intestinal DPS was used to estimate relative 

rates of cholesterol synthesis in liver and small intestine from 

acetate, 2 1/2 hours after administration. Recovery of ^^C-counts in acid 

steroid fractions from liver, small intestine and feces (including large 

intestinal contents) was interpreted to represent cholesterol degradation 

and excretion. 

In vivo data related to body weight changes, food intakes and food 

efficiencies were similar to previous findings in our laboratory with 

adult rats using relatively similar diets (Reeves and Arnrich, 1974; 

Derer, 1974). Animals on BT diet consumed more food and gained more 

weight than animals on LF diet. Food efficiencies were not different for 

the three diets used. Food efficiencies decreased markedly with aging 

(2-3X). Tissue weights of liver, epididymal fat pads, kidneys, stomach 

and heart were all sensitive to dietary manipulations and aging. How­

ever, spleen weight reached maximal weight by age 2 months, and was not 

influenced by further variations in either fat level, fat type or meal 

pattern. 

Plasma cholesterol concentrations responded little to variations in 

the fat component of these diets or to meal frequency. However, plasma 

cholesterol concentrations tended to increase as rats matured. 

This age-related overall mean increase in plasma cholesterol concen­

tration approximated 23% for all dietary regimens for the age span between 

2 to 4 months. Failure of plasma cholesterol concentration in young rats 

to respond to variation in dietary fat could be due to low plasma choies-
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terol levels characteristic of young animals, and to elevated rates of 

cholesterol exchanges between plasma and the slowly equilibrating pool 

such as muscle, skin and other body systems. 

Plasma triglyceride concentrations like those of cholesterol were 

also not influenced by either dietary fat or by meal pattern. Other 

investigators have indicated that circulating triglyceride levels 

influence plasma cholesterol levels indirectly. 

Plasma levels of two metabolites of thyroxine were measured to 

assess thyroid status in young rats. Dietary fat and meal pattern had no 

influence on plasma thyroxine levels measured either as plasma T3, T4, 

T3/T4 or TI (T4 x 0.653) in any of the treatment groups. Data on plasma 

thyroxine and triglycerides correlated with the data obtained for plasma 

cholesterol concentrations with the variables used. 

Meal feeding did not elevate plasma cholesterol concentrations in all 

the dietary groups examined. This finding contrasts to those reported for 

the adult rats from our laboratory. Failure to demonstrate differences in 

plasma cholesterol levels between ad libitum controls and meal fed animals 

could be due to adaptation to meal feeding after 30 days on the diet. 

Since preexperimental plasma cholesterol levels were not measured, the 

possibility exists that after 30 days on the diet, the animal had already 

adapted physiologically to the meal feeding pattern. 

High fat diets (SO and BT) stimulated increased rates of ^"C-choles-

terol synthesis from ^H-acetate in liver and small intestine through­

out the three age periods studied. It has been suggested that increased 

cholesterogenesis with high fat diets is due to decreased hepatic lipo-

genesis resulting in increased substrate availability for cholesterol 
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synthesis such as acetyl CoA. In addition, high fat diets, particularly 

with safflower oil as fat source, induced cholesterol accumulation in 

liver and small intestine. Cholesterol degradation to bile acids in the 

liver and excretion as bile acids in the small intestine and excreta were 

likewise elevated with SO feeding. In contrast, feeding beef tallow 

invoked in many instances similar rates of degradation and excretion as 

did feeding a low-fat diet. 

The most striking finding of polyunsaturated fat feeding in maturing 

rats was the increased bile acid content, measured as ^"C-acid steroids, 

in liver, small intestine and feces plus large intestinal contents. This 

finding of increased bile acid formation and excretion with safflower oil 

feeding is supported by experiments of others, where bile acid half life 

was reduced with polyunsaturated fat feeding. The finding that hepatic 

synthesis was not stimulated with increased unsaturation of dietary fat 

was unexpected since it is generally accepted that polyunsaturated fat 

feeding stimulates hepatic holesterogenesis. Cholesterol content in liver, 

quantitated chemically, was elevated with safflower oil feeding. However, 

radiochemical data on '^C-cholesterol content failed to demonstrate dif­

ference with polyunsaturated fat intake. Cholesterol synthesis in the 

small intestine, however, was suppressed with decreasing dietary fat 

saturation. Such decrease could be attributed to the increase in choles­

terol accumulated in this tissue. This finding supports the report of 

decreased HMG-CoA reductase activity with polyunsaturated fat feeding in 

young rats (Shefer et al., 1973). Thus it appears from this study that., 

with polyunsaturated fat feeding, changes in cholesterol degradation to 

bile acids and excretion of bile acids precede changes in hepatic 
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cholesterol synthesis and plasma cholesterol concentrations. The mecha­

nism by which polyunsaturated fat influences cholesterol degradation and 

excretion is open to further study. 

An age effect on cholesterol metabolism has been demonstrated in this 

experiment. Young rats maturing from 2 months to 4 months had increased 

rates of cholesterogenesis in liver and small intestine. Similar in­

creases with age were noted for acid steroid formation and excretion, 

cholesterol content in plasma, liver and small intestine. In most 

instances, age-related increases were associated with increases in organ 

weights. 

Meal feeding in young animals had little effect on cholesterol metab­

olism on a unit tissue weight basis. Cholesterol metabolism for these 

animals was measured at a time of day when cholesterogenesis was not at 

peak rate. It seems possible, therefore, that in the meal fed groups, 

cholesterogenesis would have been higher than determined here if this time 

of animal sacrifice had been near peak cholesterogenesis for the meal fed 

model. 

Animals fed 38% of calories as safflower oil showed a relatively 

enhanced incidence of respiratory, skin and eye infections. 

Cardiac and intestinal tissues of safflower oil fed animals appeared 

fragile to physical manipulation. Cardiac fragility in these animals 

appeared to affect mechanical function measured by stress-strain response, 

even though examination of ultra-structures of the myocardial cells were 

normal, and did not differ from those of animals on low fat and beef 

tallow diets (Experiments 2 and 3). In general, ventricles of safflower 

oil fed rats showed increased cardiac distensibility upon mechanical 
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stretching. Increased distensibility was related to increased elastin 

content, which in turn may be related to increased tissue prostaglandin 

synthesis from high levels of linoleate present in safflower oil. 

Tendency to decrease cardiac distensibility with advancing age and with 

meal feeding may be associated with decreased elastin content. Collagen 

content was not influenced by any of the variables used. Ultra-structures 

of myocardial cells were normal. Examinations indicated little differ­

ences in fine structures with variations in dietary fat level and satura­

tion. 

In conclusion, the effects of varying dietary fat level and satura­

tion, age and meal pattern in young rats appear to be: 

1. Increased hepatic cholesterogenesis with increased dietary fat 

level regardless of fat source. 

2. Increased bile acid formation and excretion with polyunsaturated 

fat feeding. 

3. No difference in hepatic cholesterogenesis with polyunsaturated 

fat feeding, though small intestinal cholesterol synthesis was 

suppressed. Suppression of intestinal cholesterogenesis was 

attributed to the increase in cholesterol content in this tissue 

from both chemical and radiochemical data. Increased cholesterol 

content in liver was shown chemically, but not radiochemically. 

4. Little difference in plasma cholesterol, triglyceride and thy­

roxine concentrations by variations of either dietary fat level 

or fat saturation in all the treatment groups. Mean plasma 

cholesterol concentration tended to increase with age. 
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5. Increased animal susceptibility to respiratory, skin and eye 

infections, as well as increased cardiac and intestinal fragility 

with polyunsaturated fat feeding. Cardiac fragility correlated 

to increased ventricular distensibility as measured by stress-

strain response. Increased distensibility with safflower oil 

feeding was associated to increased elastin content which may be 

related to the in vivo increase of prostaglandin from linoleate. 

Ultra-structures of myocardial cells did not indicate alterations 

with variations in dietary fat level and saturation. 

6. Alterations of cholesterol metabolism with aging and meal feeding 

appeared affected primarily through changes in tissue size. In 

addition, these variables tended to decrease cardiac distensi­

bility, though they had no effect on fine structures of myo­

cardial cells. 
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Table 23. Body weight, weight gain, food intakes and food efficiency (FE), Experiment 2 

2 months 4 months 

Body 
weight 

g 

Weight 
gain 
g 

Food 
intake 
kcal 

FE 
g-100 kcal 

Body 
weight 

g 

Weight 
gain 

g 

Food 
intake 
kcal 

FE 
g-100 kcal 

LF-AL 302±8® 6.1+.5 72±5 10±2 514±17 0.7±.03 76+6 0.9+.1 

LF-MF 216±7 6«5±.5 50±3 12±2 440±14 1.0±.l 64±4 1.6+.1 

SO-AL 318±7 6.5±.5 68±4 10±1 492±10 1.2±.l 72+6 1.7+.2 

SO-MF 286±5 6,6±,4 60±5 n±2 470±11 1.2+.1 70±5 1.7+.1 

BT-AL 334±7 6,7±.6 77±6 9±1 526±14 0.7+.04 74+6 0.9+.1 

BT-MF 285±5 6.8±,5 65+5 mi 487+13 1.3+.1 73+6 1.6+.2 

®Mean ± SEM. 
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